
Basic Shell Scripting

Jason Li
HPC User Services
LSU HPC / LONI
sys-help@loni.org

Louisiana State University, Baton Rouge
Oct 2, 2024

1

mailto:sys-help@loni.org

Outlines

 HPC User Environment 2

1. Basic concepts
2. Preparing my job
3. Submitting my job
4. Managing my jobs

 HPC User Environment 1

1. Intro to HPC
2. Getting started
3. Into the cluster
4. Software environment (modules)

2

Outlines

1. Introduction
1) What’s Shell?
2) What can Shell do?

2. Basic Knowledge
1) Interactive vs Non-interactive (Shell Script)
2) Basic Commands & Syntax
3) Variables
4) Arrays
5) Arithmetic Operations

3. Beyond Basics
1) Subshells
2) Flow Control
3) Advanced Text Processing Commands

4. BONUS: Where to Get Help

3

Outlines

4

 Example and exercises:

– http://www.hpc.lsu.edu/training/weekly-materials/Downloads/ShellScripting.zip

http://www.hpc.lsu.edu/training/weekly-materials/Downloads/ShellScripting.zip

BONUSBasic Knowledge Beyond BasicsIntroduction

Outlines

1. Introduction
1) What’s Shell?
2) What can Shell do?

2. Basic Knowledge
1) Interactive vs Non-interactive (Shell Script)
2) Basic Commands & Syntax
3) Variables
4) Arrays
5) Arithmetic Operations

3. Beyond Basics
1) Subshells
2) Flow Control
3) Advanced Text Processing Commands

4. BONUS: Where to Get Help

5

BONUSBasic Knowledge Beyond BasicsIntroduction

1) What’s Shell?

• Previously in HPC User Environment 2…
– Two types of jobs

6

1) Interactive job 2) Batch job

In both cases, you are accessing a Linux system through Shell

BONUSBasic Knowledge Beyond BasicsIntroduction

1) What’s Shell?

7

User

Kernel

Hardware

• Resource management
• Process management
• Device Drivers
• System Calls
• …

→ Speaks: Machine

BONUSBasic Knowledge Beyond BasicsIntroduction

1) What’s Shell?

8

Shell

Kernel

Hardware

User

• Command execution
• Scripting
• …

→ Speaks: Human

BONUSBasic Knowledge Beyond BasicsIntroduction

1) What’s Shell?

• Scenario 1: Multiple Shells

9

Kernel

Hardware
User 1

User 4 User 3

User 2

BONUSBasic Knowledge Beyond BasicsIntroduction

1) What’s Shell?

• Scenario 1: Multiple Shells

10

Kernel

Hardware

BONUSBasic Knowledge Beyond BasicsIntroduction

• Scenario 2: Shells within Shells (Subshells)

1) What’s Shell?

1111BONUSBasic Knowledge Beyond BasicsIntroduction

User 1

BONUSBasic Knowledge Beyond BasicsIntroduction

1) What’s Shell?

12

• Shell:

– A user interface to access UNIX-like systems (e.g., Linux) by executing commands.

BONUSBasic Knowledge Beyond BasicsIntroduction

Outlines

1. Introduction
1) What’s Shell?
2) What can Shell do?

2. Basic Knowledge
1) Interactive vs Non-interactive (Shell Script)
2) Basic Commands & Syntax
3) Variables
4) Arrays
5) Arithmetic Operations

3. Beyond Basics
1) Subshells
2) Flow Control
3) Advanced Text Processing Commands

4. BONUS: Where to Get Help

13

BONUSBasic Knowledge Beyond BasicsIntroduction

2) What can Shell do?

• Shell can do this …

– Typing commands one by one

14

BONUSBasic Knowledge Beyond BasicsIntroduction

2) What can Shell do?

• Shell can also do this …

– A much more complicated
program / script

15

[1] ShellScripting/1.2-WhatCanShellDo/parallelDownload.sh

BONUSBasic Knowledge Beyond BasicsIntroduction

2) What can Shell do?

16

• Shell Scripting:

– A practice to automate tasks with Shell commands.

BONUSBasic Knowledge Beyond BasicsIntroduction

2) What can Shell do?

17

• Take a closer look at this:

[1] ShellScripting/1.2-WhatCanShellDo/parallelDownload.sh

BONUSBasic Knowledge Beyond BasicsIntroduction

2) What can Shell do?

18

• Take a closer look at this:

[1] ShellScripting/1.2-WhatCanShellDo/parallelDownload.sh

BONUSBasic Knowledge Beyond BasicsIntroduction

2) What can Shell do?

19

• Take a closer look at this:

[1] ShellScripting/1.2-WhatCanShellDo/parallelDownload.sh

BONUSBasic Knowledge Beyond BasicsIntroduction

2) What can Shell do?

20

• Take a closer look at this:

Isn’t it basically a
programming language?

[1] ShellScripting/1.2-WhatCanShellDo/parallelDownload.sh

BONUSBasic Knowledge Beyond BasicsIntroduction

2) What can Shell do?

21

• Questions:

a) Why learn Shell if I am already familiar with another language (Python / C++ / Fortran) ?

b) Why learn another language (Python / C++ / Fortran) if I can just use Shell?

BONUSBasic Knowledge Beyond BasicsIntroduction

2) What can Shell do?

22

a) Why learn Shell if I am already familiar with another language?

– Shell is a “quick and dirty” way to get things done!

• Example: Change all text "/ddnB/work" to "/work" in all files in folder "~/mycode/" and subfolders.

Python Shell

[1] ShellScripting/1.2-WhatCanShellDo/pathSwap.py
[2] ShellScripting/1.2-WhatCanShellDo/pathSwap.sh

BONUSBasic Knowledge Beyond BasicsIntroduction

2) What can Shell do?

23

b) Why learn another language if I can just use Shell?

– Shell is highly inefficient for heavy calculation!

• Example: Try the pi calculation codes in folder "ShellScripting/1.2-WhatCanShellDo/":

C Shell

$./pi_c 10000 $./pi_shell.sh 10000

[1] ShellScripting/1.2-WhatCanShellDo/pi_c
[2] ShellScripting/1.2-WhatCanShellDo/pi_shell.sh

BONUSBasic Knowledge Beyond BasicsIntroduction

2) What can Shell do?

• Goal of Shell scripting:

• Goal of this training:

24

Shell scripting is NOT for…

• Heavy calculation (basically, anything you
wish to run faster!)

• Replacing your known language / software

We do NOT expect you to be…

• An expert in Linux or Shell language.

Shell scripting IS for…

• Automating job workflow with minimum scripting
(e.g., set up environment, call proper executables, etc.)

• Pre-processing / Post-processing
(e.g., trim data, edit config files in batch, etc.)

We DO expect you to be…

• Familiar with Shell’s basic usage.
• Able to use Shell scripting to optimize job workflow.

BONUSBasic Knowledge Beyond BasicsIntroduction

Outlines

1. Introduction
1) What’s Shell?
2) What can Shell do?

2. Basic Knowledge
1) Interactive vs Non-interactive (Shell Script)
2) Basic Commands & Syntax
3) Variables
4) Arrays
5) Arithmetic Operations

3. Beyond Basics
1) Subshells
2) Flow Control
3) Advanced Text Processing Commands

4. BONUS: Where to Get Help

25

BONUSBasic Knowledge Beyond BasicsIntroduction

Before we continue…

26

• Remember we had this figure…

Kernel

Hardware

BONUSBasic Knowledge Beyond BasicsIntroduction

Before we continue…

27

• There are many Shell implementations

– sh (Original Bourne Shell)
– bash (Bourne Again Shell)
– csh (C Shell)
– tcsh (TENEX C Shell, more features)
– ksh (KornShell)
– zsh (Z Shell)
– dash (Debian Almquist Shell)
– fish (Friendly Interactive Shell)
– …

• Supported by our clusters
• Feel free to use whichever you like!
• Can set your own default Shell

BONUSBasic Knowledge Beyond BasicsIntroduction

Before we continue…

28

• There are many Shell implementations

– sh (Original Bourne Shell)

– bash (Bourne Again Shell)
– csh (C Shell)
– tcsh (TENEX C Shell, more features)
– ksh (KornShell)
– zsh (Z Shell)
– dash (Debian Almquist Shell)
– fish (Friendly Interactive Shell)
– …

• Default Shell on all clusters
• Will only talk about it today

BONUSBasic Knowledge Beyond BasicsIntroduction

Outlines

1. Introduction
1) What’s Shell?
2) What can Shell do?

2. Basic Knowledge
1) Interactive vs Non-interactive (Shell Script)
2) Basic Commands & Syntax
3) Variables
4) Arrays
5) Arithmetic Operations

3. Beyond Basics
1) Subshells
2) Flow Control
3) Advanced Text Processing Commands

4. BONUS: Where to Get Help

29

BONUSBasic Knowledge Beyond BasicsIntroduction

1) Interactive vs Non-interactive Shell

a) Two ways to access Shell

30

Interactive

• Runs in terminal

• Can interact in real time

• Type commands one-by-one

• E.g., every time you log in in terminal

Non-interactive

• Prewritten script (Shell script)

• Cannot interact while it is running

• Runs by itself (line-by-line)

BONUSBasic Knowledge Beyond BasicsIntroduction

1) Interactive vs Non-interactive Shell

a) Two ways to access Shell

31

Interactive

• Runs in terminal

• Can interact in real time

• Type commands one-by-one

• E.g., every time you log in in terminal

Non-interactive

• Prewritten script (Shell script)

• Cannot interact while it is running

• Runs by itself (line-by-line)

BONUSBasic Knowledge Beyond BasicsIntroduction

1) Interactive vs Non-interactive Shell

a) Two ways to access Shell

32

Interactive

• Runs in terminal

• Can interact in real time

• Type commands one-by-one

• E.g., every time you log in in terminal

Non-interactive

• Prewritten script (Shell script)

• Cannot interact while it is running

• Runs by itself (line-by-line)

BONUSBasic Knowledge Beyond BasicsIntroduction

1) Interactive vs Non-interactive Shell

a) Two ways to access Shell

33

* A few features may be slightly different. But for now, don’t worry about that.

Interactive Non-interactive

Shell scripting works the same way in both! *

BONUSBasic Knowledge Beyond BasicsIntroduction

1) Interactive vs Non-interactive Shell

b) How to write a Shell script

34

[1] ShellScripting/2.1-InteractiveVsNonInteractive/helloworld.sh

" Shebang " -
• Shell to run this script with

BONUSBasic Knowledge Beyond BasicsIntroduction

1) Interactive vs Non-interactive Shell

b) How to write a Shell script

35

[1] ShellScripting/2.1-InteractiveVsNonInteractive/helloworld.sh

Commands to run

BONUSBasic Knowledge Beyond BasicsIntroduction

1) Interactive vs Non-interactive Shell

c) How to run a Shell script (four methods)

36

Method Example Remarks

1 Use full path
(Most common)

$./helloworld.sh

$ /path/to/helloworld.sh

• File must be executable (Run "chmod u+x [filename]" if not)
• Uses Shell in shebang (if exists) or default Shell
• Starts a new subshell

2 Use specific Shell
$ bash helloworld.sh

$ csh helloworld.sh

3 Use "source" or "."
$ source helloworld.sh

$. helloworld.sh

4 Run as Shell command $ helloworld.sh

• File does NOT need to be executable
• Uses the specified Shell (ignore shebang)
• Starts a new subshell
• File does NOT need to be executable
• Uses current Shell (ignore shebang)
• Does NOT start a new subshell

• File must be executable
• Uses Shell in shebang (if exists) or default Shell
• Parent directory must be added to $PATH environment variable
• Starts a new subshell

[1] ShellScripting/2.1-InteractiveVsNonInteractive/helloworld.sh

BONUSBasic Knowledge Beyond BasicsIntroduction

1) Interactive vs Non-interactive Shell

• Pop quiz: What is this?

38

[1] ShellScripting/2.1-InteractiveVsNonInteractive/pi_c.sbatch

 Anything you learned about
Shell today, applies to your
batch job files!

BONUSBasic Knowledge Beyond BasicsIntroduction

Outlines

1. Introduction
1) What’s Shell?
2) What can Shell do?

2. Basic Knowledge
1) Interactive vs Non-interactive (Shell Script)
2) Basic Commands & Syntax
3) Variables
4) Arrays
5) Arithmetic Operations

3. Beyond Basics
1) Subshells
2) Flow Control
3) Advanced Text Processing Commands

4. BONUS: Where to Get Help

39

BONUSBasic Knowledge Beyond BasicsIntroduction

2) Basic Commands & Syntax

40

a) Basic commands

Command Description

File

ls List files at a given location .

cp / mv Copy / Move files.

rm Remove files.

find Search for files.

Directory
cd Change directory.

mkdir Create a directory.

pwd Print current directory in standard output.

Display
cat Print out an entire file in standard output.

head / tail Show first / last several lines of a file.

more / less Display file one page at a time.

System
echo Print out strings in standard output.

date Print out current date & time in standard output.
…

[1] https://www.hpc.lsu.edu/training/archive/tutorials.php

https://www.hpc.lsu.edu/training/archive/tutorials.php

BONUSBasic Knowledge Beyond BasicsIntroduction

2) Basic Commands & Syntax

41

b) Commonly used special characters that works with commands

Character Description Example

Comment: Anything follows in the same line will not be executed. $ date # Print time stamp

; Command separator: Allows multiple commands in one line. $ module purge; module load python

| Pipeline: Use output of first command as input of the second. $ squeue –u $USER | wc -l

>
Redirect (Output): Redirect standard output / error to file. This
method overwrites the file.

$./testoutput > out.txt

$./testoutput 1> out.txt 2> err.txt

>>
Redirect (Output): Redirect standard output / error to file. This
method appends to the file.

$./testoutput >> out.txt

$./testoutput 1>> out.txt 2>> err.txt

< Redirect (Input): Read input from a file instead of standard input. $./testinput < input.txt

&
Send to background: Send a command to background, and do not
wait for it to finish. $./testoutput &

[1] ShellScripting/2.2-BasicCommands/testoutput
[2] ShellScripting/2.2-BasicCommands/testinput

BONUSBasic Knowledge Beyond BasicsIntroduction

Outlines

1. Introduction
1) What’s Shell?
2) What can Shell do?

2. Basic Knowledge
1) Interactive vs Non-interactive (Shell Script)
2) Basic Commands & Syntax
3) Variables
4) Arrays
5) Arithmetic Operations

3. Beyond Basics
1) Subshells
2) Flow Control
3) Advanced Text Processing Commands

4. BONUS: Where to Get Help

43

BONUSBasic Knowledge Beyond BasicsIntroduction

3) Variables

44

a) Variable basics

– ATTENTION!
• All Shell variables are treated as strings! (No integer, float, Boolean...)
• No space allowed in assignment!
• Use { } to explicitly mark variable name. (e.g., ${var} instead of $var)

– Think about it. When can this be useful?

To assign To access To delete

Syntax var=value $var unset var

Examples

$ str="Hello World!" $ echo $str

$ workdir="/work/jasonli3/test" $ cd $workdir

$ myexec="/home/jasonli3/myexec"

$ myout="/work/jasonli3/out.txt"
$ $myexec > $myout

BONUSBasic Knowledge Beyond BasicsIntroduction

3) Variables

46

b) Naming rules

– Allowed characters: letters (a-z, A-Z), numbers (0-9), underscore (_)

– Must begin with a letter or an underscore.

– No other special characters (e.g., #, @, %, $, …)

• Allowed: varname, var_name, _varName, var123

• Not allowed: 123var, #var, var@name, var-123

– Case sensitive

• VAR and var are different variables!

BONUSBasic Knowledge Beyond BasicsIntroduction

3) Variables

47

c) Global & local variables

* Convention, to avoid conflict

Local Global
Syntax $ var=value $ export VAR=value

Differences
• Exist only in current shell • Copied to all subshells

• Lowercase* • Uppercase*

BONUSBasic Knowledge Beyond BasicsIntroduction

3) Variables

49

d) Environment variables

– Definition:

• Specific variables used by Shell or other programs to regulate certain functionalities.

– Remarks:

• Names are specific (Cannot be other names)
• Usually global (Convention)
• Customizable, will change Shell or program behavior (Caution!)
• Programs may have their own environment variables (e.g., Conda / Python / R / MPI …)

BONUSBasic Knowledge Beyond BasicsIntroduction

3) Variables

50

d) Environment variables

Variable Functionality

[1] https://www.hpc.lsu.edu/docs/slurm.php

Shell

Slurm

…
OpenMP OMP_NUM_THREADS Number of threads per process for OpenMP.

USER Username.

PWD Full path to current directory.
HOME Full path to user’s home directory.

HOSTNAME Name of the current node.
PATH A list of paths to look for executables as Shell commands (separated by ":").

LD_LIBRARY_PATH A list of paths to look for shared libraries (separated by ":").
SLURM_JOB_ID Slurm job ID.

SLURM_JOB_NODELIST A list of nodes required for current job (useful for MPI).

https://www.hpc.lsu.edu/docs/slurm.php

BONUSBasic Knowledge Beyond BasicsIntroduction

3) Variables

52

e) Quotations & variables

Quotation Description Example

""

''

``

Allows variable expansion (“$”) and command substitution (“``”)
within quotes, and preserves literal values of all other characters.

$ echo "echo $USER"

Preserves the literal value of ALL CHARACTERS within the quotes.
$ echo 'echo $USER'

Command substitute: Execute the command(s) inside the
quotation and use its output to replace the quotation.

$ echo `echo $USER`

echo jasonli3

echo $USER

jasonli3

BONUSBasic Knowledge Beyond BasicsIntroduction

Outlines

1. Introduction
1) What’s Shell?
2) What can Shell do?

2. Basic Knowledge
1) Interactive vs Non-interactive (Shell Script)
2) Basic Commands & Syntax
3) Variables
4) Arrays
5) Arithmetic Operations

3. Beyond Basics
1) Subshells
2) Flow Control
3) Advanced Text Processing Commands

4. BONUS: Where to Get Help

54

BONUSBasic Knowledge Beyond BasicsIntroduction

4) Arrays

55

• A collection of multiple values
– Basic logic very similar to “arrays” in any other language, with some twists!

• Each element is accessed by index

• Index starts with 0

• Bonus: Get length of array - ${#myAry[@]}

Entire array

One element

To accessTo assign To delete

$ myAry=("Alice" "Bob" "Charlie") $ unset myAry $ echo ${myAry[@]}

$ echo ${myAry[1]}$ myAry[1]="Brian" $ unset myAry[1]

BONUSBasic Knowledge Beyond BasicsIntroduction

4) Arrays

57

• Question:

– I am not using Shell for heavy calculation anyways! What can I possibly need arrays for?

$ parallel myexec ::: ${inputParams[@]}

Nov 6, 2024
[1] https://www.hpc.lsu.edu/training/tutorials.php#upcoming

https://www.hpc.lsu.edu/training/tutorials.php#upcoming

BONUSBasic Knowledge Beyond BasicsIntroduction

Outlines

1. Introduction
1) What’s Shell?
2) What can Shell do?

2. Basic Knowledge
1) Interactive vs Non-interactive (Shell Script)
2) Basic Commands & Syntax
3) Variables
4) Arrays
5) Arithmetic Operations

3. Beyond Basics
1) Subshells
2) Flow Control
3) Advanced Text Processing Commands

4. BONUS: Where to Get Help

58

BONUSBasic Knowledge Beyond BasicsIntroduction

5) Arithmetic Operations

59

• Wait a minute!

– Didn’t you say Shell does not support number type, and we should not use it for heavy calculation?

– Correct!

– But! Sometimes arithmetic is still needed.

• Example: Parallelizing a photoelectron spectrum
calculation (my actual research)!

– Each parallel process labeled w/ an integer index [-100, 100]

– But! Need to pass on a delay parameter to each process,
a float number calculated from the integer index

[1] Nat. Photon. 17, 200–207 (2023). https://doi.org/10.1038/s41566-022-01127-3

https://doi.org/10.1038/s41566-022-01127-3

BONUSBasic Knowledge Beyond BasicsIntroduction

5) Arithmetic Operations

• What does NOT work:

[1] ShellScripting/2.5-Arithmetic/bcExample.txt

$ a=10

$ b=$a/3+2

$ echo $b # Guess what you get?

10/3+2

BONUSBasic Knowledge Beyond BasicsIntroduction

5) Arithmetic Operations

• What DOES work (assuming a=10):

Method Example Remarks

[1] ShellScripting/2.5-Arithmetic/bcExample.txt

1 $((…))
(Most common)

$ echo $(($a/3+2))
• Evaluate everything inside the braces.
• Integers only!

2 let
(Slightly more advanced)

$ let b=$a/3+2

$ let b=a/3+2

$ let b++

• Evaluate assignment w/ arithmetic calculation.
• “$” can be emitted.
• Integers only!

3 expr
(Legacy, most limited)

$ expr $a / 3 + 2
• Strictly limited to "ARG1 OPERATION ARG2” format.
• Integers only!

4 bc
(Most powerful)

$ bc

scale=3

a=10;a/3+2

$ bc < bcExample.txt

$ echo "$a/2+3" | bc

• Interactive and non-interactive mode.
• Does NOT support Shell syntax (namely, “$” for variables).
• Unassigned variables treated as 0.
• scale variable determines number of decimals.
• Supports float number!

BONUSBasic Knowledge Beyond BasicsIntroduction

Summary

• In this section, we talked about:

1) Interactive vs Non-interactive (Shell Script)

2) Basic Commands & Syntax

3) Variables

4) Arrays

5) Arithmetic Operations

63

Break

64

 Get some water
 Use restroom
 Ask questions

 Don’t forget, the examples are at:
– http://www.hpc.lsu.edu/training/weekly-materials/Downloads/ShellScripting.zip

http://www.hpc.lsu.edu/training/weekly-materials/Downloads/ShellScripting.zip

BONUSBasic Knowledge Beyond BasicsIntroduction

Outlines

1. Introduction
1) What’s Shell?
2) What can Shell do?

2. Basic Knowledge
1) Interactive vs Non-interactive (Shell Script)
2) Basic Commands & Syntax
3) Variables
4) Arrays
5) Arithmetic Operations

3. Beyond Basics
1) Subshells
2) Flow Control
3) Advanced Text Processing Commands

4. BONUS: Where to Get Help

65

BONUSBasic Knowledge Beyond BasicsIntroduction

Outlines

1. Introduction
1) What’s Shell?
2) What can Shell do?

2. Basic Knowledge
1) Interactive vs Non-interactive (Shell Script)
2) Basic Commands & Syntax
3) Variables
4) Arrays
5) Arithmetic Operations

3. Beyond Basics
1) Subshells
2) Flow Control
3) Advanced Text Processing Commands

4. BONUS: Where to Get Help

66

BONUSBasic Knowledge Beyond BasicsIntroduction

1) Subshells

67

• Definition:

– A child process of launched by an existing shell.

• Similarity:

– Still a Shell!
(Everything we talked about works the same way!)

• Difference:

– An isolated environment from its parent
(A “sandbox” Shell)

67BONUSBasic Knowledge Beyond BasicsIntroduction

BONUSBasic Knowledge Beyond BasicsIntroduction

1) Subshells

6868BONUSBasic Knowledge Beyond BasicsIntroduction

a) Launch a subshell

– What does NOT launch a subshell?
• source subshell.sh

• Commonly used for environment setting scripts (You WANT it to set up current Shell)

– source setenv.sh

Method Example Remarks

1 Run a Shell script
$./subshell.sh

$ bash subshell.sh
• Can launch different Shell types
• Check subshell level: $SHLVL

• Launches the same Shell type
• Does NOT change $SHLVL

2 Explicitly launch an interactive subshell $ bash

3 Use command grouping "(…)" $ (echo "I am in subshell!")

[1] ShellScripting/3.1-Subshells/subshell.sh
[2] ShellScripting/3.1-Subshells/setenv.sh

BONUSBasic Knowledge Beyond BasicsIntroduction

1) Subshells

7070BONUSBasic Knowledge Beyond BasicsIntroduction

b) Scope of variables
Local variable Global variable

Shell level 1

Shell level 2

Shell level 3

var="Hello" export var="Hello"

×

(Exists only in current Shell) (Copied to all subshells)

√

×

×

√

√

BONUSBasic Knowledge Beyond BasicsIntroduction

Outlines

1. Introduction
1) What’s Shell?
2) What can Shell do?

2. Basic Knowledge
1) Interactive vs Non-interactive (Shell Script)
2) Basic Commands & Syntax
3) Variables
4) Arrays
5) Arithmetic Operations

3. Beyond Basics
1) Subshells
2) Flow Control
3) Advanced Text Processing Commands

4. BONUS: Where to Get Help

71

BONUSBasic Knowledge Beyond BasicsIntroduction

2) Flow control

7272BONUSBasic Knowledge Beyond BasicsIntroduction

a) Condition – if statement

b) Loop – for loop

c) Loop – while loop

d) Functions

BONUSBasic Knowledge Beyond BasicsIntroduction

2) Flow control

7373BONUSBasic Knowledge Beyond BasicsIntroduction

a) Condition – if statement

Syntax

if [condition]; then

Do something

elif [condition 2] ; then

Do something

else

Do something else

fi

– Optional: elif and else

– Strict spaces between "[]" and conditions

– Use double braces “[[]]” : More modern
features (regular expressions, logic operators,
etc.)

BONUSBasic Knowledge Beyond BasicsIntroduction

2) Flow control

7474BONUSBasic Knowledge Beyond BasicsIntroduction

a) Condition – if statement

Condition Syntax

Equal to [$a –eq 0] # Integer

[$a == $b] # String

Not equal to [$a -ne 0] # Integer

[$a != $b] # String

Greater than [$a -gt 0] # Integer

Greater than or equal to [$a -ge 0] # Integer

Less than [$a -lt 0] # Integer

Less than or equal to [$a -le 0] # Integer

Zero length or null [-z $a] # String

Non zero length [-n $a] # String

BONUSBasic Knowledge Beyond BasicsIntroduction

2) Flow control

7575BONUSBasic Knowledge Beyond BasicsIntroduction

a) Condition – if statement

Condition Syntax

File exists [-e myfile]

File is a regular file [-f myfile]

File is a directory [-d /home/$USER]

File is not zero size [-s myfile]

File has read permission [-r myfile]

File has write permission [-w myfile]

File has execute permission [-x myfile]

BONUSBasic Knowledge Beyond BasicsIntroduction

2) Flow control

7676BONUSBasic Knowledge Beyond BasicsIntroduction

a) Condition – if statement

Condition [] [[]]

! (NOT) [! -e myfile]

&& (AND) [-f myfile] && [-s myfile] [[-f myfile && -s myfile]]

|| (OR) [-f myfile1] || [-f myfile2] [[-f myfile1 || -f myfile2]]

• Supported by more Shells.
• Use if you need compatibility.

• Best supported by Bash.
• Use if you need versatility.

BONUSBasic Knowledge Beyond BasicsIntroduction

2) Flow control

7777BONUSBasic Knowledge Beyond BasicsIntroduction

b) Loop – for loop

Syntax

for arg in ${myAry[@]}

do

Do something

done

– Do something for each element in an array.

BONUSBasic Knowledge Beyond BasicsIntroduction

2) Flow control

7878BONUSBasic Knowledge Beyond BasicsIntroduction

b) Loop – for loop

Array Example

User defined array
$ myAry=("Alice" "Bob" "Charlie")

$ for arg in ${myAry[@]}
…

Shell generated sequence $ for arg in `seq 1 4`
…

Output of commands $ for arg in `ls $HOME`
…

[1] ShellScripting/3.2-FlowControl/for.sh

BONUSBasic Knowledge Beyond BasicsIntroduction

2) Flow control

7979BONUSBasic Knowledge Beyond BasicsIntroduction

c) Loop – while loop

Syntax

while [condition]

do

Do something

done

– Loop as long as condition is satisfied.

– Make sure there is an escape condition !
• Otherwise the loop is doomed!

BONUSBasic Knowledge Beyond BasicsIntroduction

2) Flow control

8080BONUSBasic Knowledge Beyond BasicsIntroduction

c) Loop – while loop

Example

$ counter=0

$ while [$counter -lt 10]

do

echo "Counter is now $counter"

let counter++ # <- What does this do?

done

[1] ShellScripting/3.2-FlowControl/while.sh

BONUSBasic Knowledge Beyond BasicsIntroduction

2) Flow control

8181BONUSBasic Knowledge Beyond BasicsIntroduction

d) Functions

Syntax

Define

function_name () {

Do something

}

Call, no "()"

function_name [ARG1] [ARG2]

– A block of pre-defined code that can be reused.

– Passed arguments are accessed by:

• $1, $2, … $9, ${10}, …

• $@ (All arguments)

BONUSBasic Knowledge Beyond BasicsIntroduction

2) Flow control

8282BONUSBasic Knowledge Beyond BasicsIntroduction

d) Functions

Remarks Example

[1] ShellScripting/3.2-FlowControl/function.sh

All variables are global by default

$ myFunc1 () {
var="Bob"

}
$ var="Alice"; myFunc1 ; echo $var
Bob

Local variables must be explicitly declared

$ myFunc2 () {
local var="Bob"

}
$ var="Alice"; myFunc2 ; echo $var
Alice

Does NOT support return
(Use global variable if needed)

$ myAdd () {
result=$(($1+$2))

}
$ myAdd 10 20 ; echo $result
30

BONUSBasic Knowledge Beyond BasicsIntroduction

2) Flow control

8484BONUSBasic Knowledge Beyond BasicsIntroduction

• Summary

a) Condition – if statement

b) Loop – for loop

c) Loop – while loop

d) Functions

BONUSBasic Knowledge Beyond BasicsIntroduction

Outlines

1. Introduction
1) What’s Shell?
2) What can Shell do?

2. Basic Knowledge
1) Interactive vs Non-interactive (Shell Script)
2) Basic Commands & Syntax
3) Variables
4) Arrays
5) Arithmetic Operations

3. Beyond Basics
1) Subshells
2) Flow Control
3) Advanced Text Processing Commands

4. BONUS: Where to Get Help

85

BONUSBasic Knowledge Beyond BasicsIntroduction

3) Advanced Text Processing Commands

86

a) grep

b) sed

BONUSBasic Knowledge Beyond BasicsIntroduction

3) Advanced Text Processing Commands

87

a) grep

– Search for patterns (formatted strings) in input stream (files & pipe)

Syntax

$ grep <options> <search pattern> <files>

BONUSBasic Knowledge Beyond BasicsIntroduction

3) Advanced Text Processing Commands

88

a) grep

i. Basic functionality - Search for a string

Description Example

[1] ShellScripting/3.3-TextProcessing/employee1.txt
[2] ShellScripting/3.3-TextProcessing/employee2.txt

Search for lines contain given string in a file $ grep "Sales" employee1.txt

Search for lines do NOT contain given string in a file $ grep -v "Sales" employee1.txt

Search all files for lines contain given string in the directory $ grep "Sales" *

List files that do NOT contain given string in the directory $ grep –L "Sales" *

Search for strings in a pipe $ squeue | grep $USER

BONUSBasic Knowledge Beyond BasicsIntroduction

3) Advanced Text Processing Commands

90

a) grep

ii. Useful options

Option Description

-i Ignore cases.

-r,-R Search recursively.

-v Invert match (return those do NOT match pattern)

-l List names of the files that match the pattern.

-L List names of the files that do NOT match the pattern.

-n Print line number with output lines.

…

[1] https://man7.org/linux/man-pages/man1/grep.1.html

https://man7.org/linux/man-pages/man1/grep.1.html

BONUSBasic Knowledge Beyond BasicsIntroduction

3) Advanced Text Processing Commands

91

a) grep

iii. Pattern

• Can be as simple as strings.

• Can be Regular Expression (formatted strings to match beyond fixed strings).

BONUSBasic Knowledge Beyond BasicsIntroduction

3) Advanced Text Processing Commands

92

a) grep

iii. Pattern

Metacharacter Matches Example

Anchor
^ Beginning of a line. ^Name (Beginning of a line followed by "Name")

$ End of a line. Salary$ ("Salary" followed by end of a line)

Substitution . Any single character a.e (E.g., "age", "ame", "a#e", "a1e",…)

Repetition

* Preceding char. repeats 0 or more times 50* (E.g., "5", "50", "500",…)

+ Preceding char. repeats 1 or more times 50+ (E.g., "50", "500",…)

? Preceding char. repeats 0 or 1 times 50? (E.g., "5", "50")

{n,m} Preceding char. repeats n to m times 50{1,3} (E.g., "50", "500", "5000")

Or

[] Any single character inside [0-9] (E.g., any single number character)

[^] Any single character NOT inside [^0-9] (E.g., any single character but a number)

| Either pattern Sales|Technology (E.g., "Sales" or "Technology")

…

BONUSBasic Knowledge Beyond BasicsIntroduction

3) Advanced Text Processing Commands

94

b) sed

– A powerful “Stream editor” for text transformation on input stream (files & pipe)

– “grep searches, sed edits”

Syntax

$ sed <options> <script> <files>

BONUSBasic Knowledge Beyond BasicsIntroduction

3) Advanced Text Processing Commands

95

b) sed

i. Basic functionality (all patterns support regular expression)

Function Usage Description

Substitution

$ sed 's/pattern/replacement/flags' file
For each line, replace matched “pattern” with “replacement”,
and print out results.

Deletion

$ sed '/pattern/d' file Delete lines with matched pattern, and print results.

…

Insertion

$ sed '/pattern/ i\newline' file # Insert before
$ sed '/pattern/ a\newline' file # Insert after

Insert / Append new line at specific location, and print results.

$ sed 's/$[0-9]*/$9000/' employee2.txt Replace only the first match of each line.

$ sed 's/$[0-9]*/$9000/g' employee2.txt “Greedy” mode, replace all matches of each line.

$ sed '/Sales/d' employee2.txt Delete all lines matches “Sales”.

$ sed '2,4d' employee2.txt Remove line 2 through 4.

$ sed '/Alice/ i\newline' Insert before lines matches “Alice”.

$ sed '3 a\newline' Append to line 3.

[1] ShellScripting/3.3-TextProcessing/employee2.txt

BONUSBasic Knowledge Beyond BasicsIntroduction

3) Advanced Text Processing Commands

97

b) sed

ii. Other common usage

Usage Example Description

[1] ShellScripting/3.3-TextProcessing/employee2.txt

$ sed –i <script> file $ sed –i 's/$[0-9]*/$9000/' employee2.txt
Change file in-place instead of printing
results.

$ sed –e <script1> –e <script2>
file

$ sed –e 's/$[0-9]*/$9000/' \
–e 's/Rep/Assistant/' employee2.txt

Execute multiple scripts.

$ cmd | sed <options> <script> $ conda env list | sed '/^#/d' Parsing piped output instead of file.

BONUSBasic Knowledge Beyond BasicsIntroduction

3) Advanced Text Processing Commands

99

• Summary

– “grep searches, sed edits.”

BONUSBasic Knowledge Beyond BasicsIntroduction

Outlines

1. Introduction
1) What’s Shell?
2) What can Shell do?

2. Basic Knowledge
1) Interactive vs Non-interactive (Shell Script)
2) Basic Commands & Syntax
3) Variables
4) Arrays
5) Arithmetic Operations

3. Beyond Basics
1) Subshells
2) Flow Control
3) Advanced Text Processing Commands

4. BONUS: Where to Get Help

100

BONUSBasic Knowledge Beyond BasicsIntroduction

BONUS: Where to Get Help

101

• I need more help with Shell scripting. Where do I get help?

1) Contact HPC User Services

• Email Help Ticket: sys-help@loni.org

• Telephone Help Desk: +1 (225) 578-0900

mailto:sys-help@loni.org

BONUSBasic Knowledge Beyond BasicsIntroduction

BONUS: Where to Get Help

102

• I need more help with Shell scripting. Where do I get help?

2) Generative AI

ChatGPT GitHub Copilot

BONUSBasic Knowledge Beyond BasicsIntroduction

BONUS: Where to Get Help

• Why I recommend generative AI for Shell scripting?

104

Shell scripting Generative AI

• Something you may not be too familiar with, but
have to work with on a daily basis for HPC jobs.

• Easy to get an answer without extensive
knowledge.

• A quick and dirty solution for automation. Not
comprehensive software framework.

• Usually just need to get the job done. Do not care
for reliable sources (unlike doing research).

• Good at giving quick and dirty answers. Not
suitable for building comprehensive software
framework.

• Experienced, but not scientific. Trained with
collective human knowledge pool. But bad at
selecting particular reliable sources.

BONUSBasic Knowledge Beyond BasicsIntroduction

BONUS: Where to Get Help

• Steps

105

1) Find out what you want to do and ask AI the right questions

• Try these examples (think about how to do it first, then ask AI):

a) Change all text "/ddnB/work" to "/work" in all files in folder "~/mycode/" and subfolders.

b) In a “,” separated .csv database, delete all columns starting from the 10th, and add an index column as the
first column.

c) Run executable “myexec” with “input.txt” as standard input, but replacing all “TIME” text in “input.txt” with
current timestamp generated by “date”.

BONUSBasic Knowledge Beyond BasicsIntroduction

BONUS: Where to Get Help

• Steps

106

2) TEST! TEST! TEST!

• AI generated scripts may not work right away!

• Test it in a safe & isolated environment (a sandbox) first, especially your script is something destructive!

• You may need to come back and ask AI to revise your script.

BONUSBasic Knowledge Beyond BasicsIntroduction

BONUS: Where to Get Help

• Steps

107

3) Adopt in your workflow

BONUSBasic Knowledge Beyond BasicsIntroduction

BONUS: Where to Get Help

• Steps

108

Ask AI the right questions and
get the results

TEST! TEST! TEST!

Adopt generated script in your
workflow

Conclusion

1. Introduction
1) What’s Shell?
2) What can Shell do?

2. Basic Knowledge
1) Interactive vs Non-interactive (Shell Script)
2) Basic Commands & Syntax
3) Variables
4) Arrays
5) Arithmetic Operations

3. Beyond Basics
1) Subshells
2) Flow Control
3) Advanced Text Processing Commands

4. BONUS: Where to Get Help

109

Conclusion

110

 Take-home message:

When NOT to use Shell scripting? When to use Shell scripting?

• Heavy calculation!
• Automating job workflow
• Pre-processing / Post-processing
• …

Contact us

 Contact user services

 Email Help Ticket: sys-help@loni.org
 Telephone Help Desk: +1 (225) 578-0900

111

mailto:sys-help@loni.org

	 Basic Shell Scripting
	Outlines
	Outlines
	Outlines
	Outlines
	1) What’s Shell?
	1) What’s Shell?
	1) What’s Shell?
	1) What’s Shell?
	1) What’s Shell?
	1) What’s Shell?
	1) What’s Shell?
	Outlines
	2) What can Shell do?
	2) What can Shell do?
	2) What can Shell do?
	2) What can Shell do?
	2) What can Shell do?
	2) What can Shell do?
	2) What can Shell do?
	2) What can Shell do?
	2) What can Shell do?
	2) What can Shell do?
	2) What can Shell do?
	Outlines
	Before we continue…
	Before we continue…
	Before we continue…
	Outlines
	1) Interactive vs Non-interactive Shell
	1) Interactive vs Non-interactive Shell
	1) Interactive vs Non-interactive Shell
	1) Interactive vs Non-interactive Shell
	1) Interactive vs Non-interactive Shell
	1) Interactive vs Non-interactive Shell
	1) Interactive vs Non-interactive Shell
	1) Interactive vs Non-interactive Shell
	Outlines
	2) Basic Commands & Syntax
	2) Basic Commands & Syntax
	Outlines
	3) Variables
	3) Variables
	3) Variables
	3) Variables
	3) Variables
	3) Variables
	Outlines
	4) Arrays
	4) Arrays
	Outlines
	5) Arithmetic Operations
	5) Arithmetic Operations
	5) Arithmetic Operations
	Summary
	Break
	Outlines
	Outlines
	1) Subshells
	1) Subshells
	1) Subshells
	Outlines
	2) Flow control
	2) Flow control
	2) Flow control
	2) Flow control
	2) Flow control
	2) Flow control
	2) Flow control
	2) Flow control
	2) Flow control
	2) Flow control
	2) Flow control
	2) Flow control
	Outlines
	3) Advanced Text Processing Commands
	3) Advanced Text Processing Commands
	3) Advanced Text Processing Commands
	3) Advanced Text Processing Commands
	3) Advanced Text Processing Commands
	3) Advanced Text Processing Commands
	3) Advanced Text Processing Commands
	3) Advanced Text Processing Commands
	3) Advanced Text Processing Commands
	3) Advanced Text Processing Commands
	Outlines
	BONUS: Where to Get Help
	BONUS: Where to Get Help
	BONUS: Where to Get Help
	BONUS: Where to Get Help
	BONUS: Where to Get Help
	BONUS: Where to Get Help
	BONUS: Where to Get Help
	Conclusion
	Conclusion
	Contact us

