
Basic Shell Scripting

Feng Chen

HPC User Services

LSU HPC & LONI

sys-help@loni.org

Louisiana State University

Baton Rouge

July 31, 2024

Basic Shell Scripting 1

What have we learned so far?

➢ Introduction to Linux

– OS used on HPC clusters

➢ HPC User Environment 1

– LSU and LONI HPC policy

– Connect to our cluster

– Use software on HPC

➢ HPC User Environment 2

– How to submit jobs

• Interactive jobs

• Batch jobs

Basic Shell Scripting 2

Outline

Basic Shell Scripting 3

• Introduction to Linux Shell

• Shell Scripting Basics

• Variables/Special Characters

• Arithmetic Operations

• Arrays

• Beyond Basic Shell Scripting

– Flow Control
– Functions

• Advanced Text Processing Commands
(grep, sed, awk)

Linux System Architecture

Basic Shell Scripting 4

▪ An application running on top of the kernel and provides a

command line interface to the system

▪ Process user’s commands, gather input from user and execute programs

▪ Types of shell with varied features

o sh
o the original Bourne shell.

o ksh
o one of the three: Public domain ksh (pdksh), AT&T ksh or mksh

o bash
o the GNU Bourne-again shell. It is mostly Bourne-compatible, mostly

POSIX-compatible, and has other useful extensions. It is the default on

most Linux systems.

o csh
o BSD introduced the C shell, which sometimes resembles slightly the C

programming language.

o tcsh
o csh with more features. csh and tcsh shells are NOT Bourne-

compatible.

What is a Linux Shell

Basic Shell Scripting 5

Shell Comparison

*: not by default

http://www.cis.rit.edu/class/simg211/unixintro/Shell.html

Software sh csh ksh bash tcsh

Programming language y y y y y

Shell variables y y y y y

Command alias n y y y y

Command history n y y y y

Filename autocompletion n y* y* y y

Command line editing n n y* y y

Job control n y y y y

Basic Shell Scripting 6

http://www.cis.rit.edu/class/simg211/unixintro/Shell.html

▪ Check the current shell you are using
▪ echo $0

▪ List available shells on the system
▪ cat /etc/shells

▪ Change to another shell
▪ csh

▪ Date
▪ date

▪ wget: get online files
▪ wget https://ftp.gnu.org/gnu/gcc/gcc-7.1.0/gcc-7.1.0.tar.gz

▪ Compile and run applications
▪ gcc hello.c –o hello

▪ ./hello

▪ What we need to learn today?

o Automation of an entire script of commands!

o Use the shell script to run jobs – Write job scripts

What can you do with a shell?

Basic Shell Scripting 7

Shell Scripting

▪ Script: a program written for a software environment to automate

execution of tasks

▪ A series of shell commands put together in a file

▪ When the script is executed, those commands will be executed

one line at a time automatically

▪ Shell script is interpreted, not compiled.

▪ The majority of script programs are “quick and dirty”, where the main

goal is to get the program written quickly

▪ May not be as efficient as programs written in C and Fortran

Basic Shell Scripting 8

When NOT to use Shell Scripting…

▪ Selected situations:

o Resource-intensive tasks, especially where speed is a factor

(sorting, hashing, recursion [2] ...)

o Procedures involving heavy-duty math operations, especially

floating point arithmetic, arbitrary precision calculations, or

complex numbers (use C++ or FORTRAN instead)

o Complex applications, where structured programming is a

necessity (type-checking of variables, function prototypes, etc.)

o Extensive file operations required (Bash is limited to serial file

access, and that only in a particularly clumsy and inefficient line-

by-line fashion.)

o Need native support for multi-dimensional arrays, data structures,

such as linked lists or trees

o Need to use libraries or interface with legacy code

Basic Shell Scripting 9

Script Example (~/.bashrc)

.bashrc

Source global definitions

if [-f /etc/bashrc]; then

. /etc/bashrc

fi

User specific aliases and functions

export PATH=$HOME/packages/bin:$PATH

export LD_LIBRARY_PATH=$HOME/packages/lib:$LD_LIBRARY_PATH

alias qsubI="qsub -I -X -l nodes=1:ppn=20 -l walltime=01:00:00 –A
my_allocation"

alias lh="ls -altrh"

Basic Shell Scripting 1
0

Hello World

1. #!: "Shebang” line to instruct which interpreter to use.

In the current example, bash. For tcsh, it would be:
#!/bin/tcsh

2. All comments begin with "#".

3. Print "Hello World!" to the screen.

#!/bin/bash
A script example
echo 'Hello World!' # print something

Basic Shell Scripting 11

[fchen14@mike1 shelltut]$./hello_world.sh # using default /bin/bash
Hello World!
[fchen14@mike1 shelltut]$ bash hello_world.sh # using bash to run the script
Hello World!

Interactive and non-interactive shells

• An interactive shell is one started without non-option arguments, unless -s is

specified, without specifying the -c option, and whose input and error output

are both connected to terminals or one started with the -i option.

o The user can interact with the shell from the terminal.

o e.g., open an interactive shell by typing bash or ssh from the terminal

• A shell running a script is always a non-interactive shell.

o All the same, the script can still access its tty. It is even possible to

emulate an interactive shell in a script.

o Test whether you are using an interactive shell using $- (prints The current

set of options in your current shell.)
[fchen14@mike1 shelltut]$ echo $-
himBH
[fchen14@mike1 shelltut]$ cat checkshell.sh
#!/bin/bash
read value # you can still interact with the script
echo $-
[fchen14@mike1 shelltut]$./checkshell.sh
hB

Basic Shell Scripting 12

Subshell

o Definition:

o A subshell is a child process launched by a shell (or shell script).

o Just as your commands are interpreted at the command-line prompt,

similarly does a script batch-process a list of commands.

o Each shell script running is, in effect, a subprocess (child process) of

the parent shell.

o Two typical examples of starting subshell:

o Running a shell script launches a new process, a subshell.

o Type “bash” from an interactive shell

Basic Shell Scripting 13

Outline

• Introduction to Linux Shell

• Shell Scripting Basics

• Variables/Special Characters

• Arithmetic Operations

• Arrays

• Beyond Basic Shell Scripting

• Control flow

• Functions

• Advanced Text Processing Commands
(grep, sed, awk)

Basic Shell Scripting 14

Variables

▪ Variable names

▪ Must start with a letter or underscore

▪ Number can be used anywhere else

▪ Do not use special characters such as @,#,%,$

▪ Case sensitive

▪ Allowed: VARIABLE, VAR1234able, var_name, _VAR

▪ Not allowed: 1var, %name, $myvar, var@NAME, myvar-1

▪ To reference a variable, prepend $ to the name of the variable

▪ Example: $PATH, $LD_LIBRARY_PATH, $myvar etc.

▪ When assigning a variable, no space allowed before or after the

equal sign. (bash)

Basic Shell Scripting 15

Global and Local Variables

▪ Two types of variables:

▪ Global (Environmental) variables

o Inherited by subshells (child process, see next slide)

o provide a simple way to share configuration settings

between multiple applications and processes in Linux

o Using all uppercase letters by convention

o Example: PATH, LD_LIBRARY_PATH, DISPLAY etc.

o printenv/env list the current environmental variables in

your system.

▪ Local (shell) variables

o Only visible to the current shell

o Not inherited by subshells

Basic Shell Scripting 16

Editing Variables

▪ Assign values to variables

▪ Local (Shell) variables is only valid within the current shell, while

environment variables are valid for all subsequently opened shells.

▪ Example: useful when running a script, where exported variables
(global) at the terminal can be inherited within the script.

Basic Shell Scripting 17

Type sh/ksh/bash csh/tcsh

Shell (local) name=value set name=value

Environment (global) export name=value setenv name value

With export Without export

$ export v1=one

$ bash

$ echo $v1

→one

$ v1=one

$ bash

$ echo $v1

→

Global and Local Variables

- current shell and subshell

Basic Shell Scripting 18

Current Shell

Sub Shell
export VARC=XX

visible

export VARS=YY

Type bash or call
another script

Exit the Sub Shell

echo $VARC
echo $VARS

echo $VARC
echo $VARS

How to inherit the variables in the script?

• Using the source command, it has a synonym in dot “.” (period)

o Syntax:
. filename [arguments]
source filename [arguments]

o The script does not need execute permission in this case. Commands

are executed in the current shell process, so any changes made to your

environment will be visible when the script finishes execution.

o Executing will run the commands in a new shell process (subshell).

[fchen14@mike1 shelltut]$ cat source_var.sh
#!/bin/bash
export myvar="newvalue"
[fchen14@mike1 shelltut]$ bash source_var.sh
[fchen14@mike1 shelltut]$ echo $myvar

[fchen14@mike1 shelltut]$ source source_var.sh
[fchen14@mike1 shelltut]$ echo $myvar
newvalue

Basic Shell Scripting 19

List of Some Environment Variables

PATH A list of directory paths which will be searched when a command is issued

LD_LIBRARY_PATH colon-separated set of directories where libraries should be searched for first

HOME indicate where a user's home directory is located in the file system.

PWD contains path to current working directory.

USER Current logged in user's name

OLDPWD contains path to previous working directory.

TERM specifies the type of computer terminal or terminal emulator being used

SHELL contains name of the running, interactive shell.

PS1 default command prompt

PS2 Secondary command prompt

HOSTNAME The systems host name

DISPLAY Network name of the X11 display to connect to, if available.

Basic Shell Scripting 20

Quotations

• Single quotation

– Enclosing characters in single quotes (')

preserves the literal value of each character within

the quotes. A single quote may not occur between

single quotes, even when preceded by a backslash.

• Double quotation

– Enclosing characters in double quotes (")

preserves the literal value of all characters within

the quotes, with the exception of ‘$’, ‘`’, ‘\’

• Back “quotation?”

– Command substitution (``) allows the output of a

command to replace the command itself, enclosed

string is executed as a command, almost the same

as $()

Basic Shell Scripting 21

Quotation - Examples

Basic Shell Scripting 22

Always use double quotes around variable substitutions and

command substitutions: "$foo", "${foo}"

[fchen14@mike1 ~]$ str1='echo $USER'
[fchen14@mike1 ~]$ echo "$str1"
echo $USER
[fchen14@mike1 ~]$ str2="echo $USER"
[fchen14@mike1 ~]$ echo "$str2"
echo fchen14
[fchen14@mike1 ~]$ str3=`echo $USER`
[fchen14@mike1 ~]$ echo $str3
fchen14
[fchen14@mike1 ~]$ str3=$(echo $USER)
[fchen14@mike1 ~]$ echo "$str3"
fchen14

Start a comment line.

$ Indicate the name of a variable.

\ Escape character to display next character literally; line continuation

{} Enclose name of variable

;
Command separator. Permits putting two or more commands on the

same line.

;; Terminator in a case option

. “dot” command, equivalent to source (for bash only)

| Pipe: use the output of a command as the input of another one

>

<
Redirections (0<: standard input; 1>: standard out; 2>: standard error)

Special Characters (1)

Basic Shell Scripting 23

Special Characters (2)

$? Exit status for the last command, 0 is success, failure otherwise

$$ Process ID variable.

[] Test expression, eg. if condition

[[]] Extended test expression, more flexible than []

$[], $(()) Integer expansion

||, &&, ! Logical OR, AND and NOT

Basic Shell Scripting 24

Outline

• Introduction to Linux Shell

• Shell Scripting Basics

• Variables/Special Characters

• Arithmetic Operations

• Arrays

• Beyond Basic Shell Scripting

– Arrays

– Flow Control
– Functions

• Advanced Text Processing Commands
(grep, sed, awk)

Basic Shell Scripting 25

Integer Arithmetic Operations

Operation Operator

Addition +

Subtraction -

Multiplication *

Division /

Exponentiation ** (bash only)

Modulo %

Basic Shell Scripting 26

Integer Arithmetic Operations

▪ $((...)) or $[...] commands

o x=$((1+2)) # Addition, suggested

o echo $[$x*$x] # Multiplication, deprecated

▪ let command:

o let c=$x+$x # no space

o let c=x+x # you can omit the $ sign

o let c="x + x" # can have space

o let c+=1 or let --c # C-style increment operator

▪ expr command:

o expr 10 / 2 # division, space required

o expr 5 * 4 # multiplication, space required

 Note: Bash is picky about spaces!
Basic Shell Scripting 27

Floating-Point

Arithmetic Operations

GNU basic calculator (bc) external calculator

▪ Add two numbers

echo "3.8 + 4.2" | bc
▪ Divide two numbers and print result with a precision of 5

digits:

echo "scale=5; 2/5" | bc
▪ Convert between decimal and binary numbers

echo "ibase=10; obase=2; 10" |bc
▪ Call bc directly:

bc <<< "scale=5; sqrt(2)"

Basic Shell Scripting 28

Outline

• Introduction to Linux Shell

• Shell Scripting Basics

– Variables

– Quotations

– Arithmetic Operations

– Arrays

• Beyond Basic Shell Scripting

– Flow Control

– Command Line Arguments

– Functions

• Advanced Text Processing Commands (grep,
sed, awk)

Basic Shell Scripting 29

• Initialization
 my_array=("Alice" "Bill" "Cox" "David")
 my_array[0]="Alice";
 my_array[1]="Bill”

• Bash supports one-dimensional arrays

• Index starts at 0

• No space around “=“

• Reference an element

 ${my_array[i]} # must include curly braces {}
• Print the whole array

${my_array[@]}

• Length of array
 ${#my_array[@]}

Arrays Operations (1)

Basic Shell Scripting 30

Array Operations (2)

• Add an element to an existing array
• my_array=(first ${my_array[@]})

• my_array=("${my_array[@]}" last)

• my_array[4]=(“Nason”)

• Copy the current array to a new array
• new_array=(${my_array[@]})

• Concatenate two arrays
• two_arrays=(${my_array[@]} ${new_array[@]})

Basic Shell Scripting 31

Array Operations (3)

• Delete the entire array
• unset my_array

• Delete an element to an existing array
• unset my_array[0]

Basic Shell Scripting 32

Outline

• Introduction to Linux Shell

• Shell Scripting Basics

– Arrays

– Arithmetic Operations

• Beyond Basic Shell Scripting

– Flow Control

– Functions

• Advanced Text Processing Commands
(grep, sed, awk)

Basic Shell Scripting 33

Flow Control

• Shell scripting languages execute commands in sequence
similar to programming languages such as C and Fortran

– Control constructs can change the order of command
execution

• Control constructs in bash

– Conditionals:

➢ if-then-else

➢ Switches: case

– Loops: for, while, until

Basic Shell Scripting 34

if statement

• if/then construct test whether the exit status of a list of
commands is 0, and if so, execute one or more
commands

if [condition]; then
Do something

elif [condition 2] ; then
Do something

else
Do something else

fi

• Strict spaces between condition and the brackets (bash)

• [[condition]] extended test construct is the more versatile Bash

version of [condition], generally safer to use.

Basic Shell Scripting 35

File Operations

Operation bash

File exists if [-e test]

File is a regular file if [-f test]

File is a directory if [-d /home]

File is not zero size if [-s test]

File has read permission if [-r test]

File has write permission if [-w test]

File has execute permission if [-x test]

Basic Shell Scripting 36

Integer Comparisons

Operation bash

Equal to if [1 –eq 2]

Not equal to if [$a –ne $b]

Greater than if [$a –gt $b]

Greater than or equal to if [1 –ge $b]

Less than if [$a –lt 2]

Less than or equal to if [$a –le $b]

Basic Shell Scripting 37

String Comparisons

Operation bash

Equal to if [$a == $b]

Not equal to if [$a != $b]

Zero length or null if [-z $a]

Non zero length if [-n $a]

Basic Shell Scripting 38

Logical Operators

Operation Example

! (NOT) if [! –e test]

&& (AND) if [-f test] && [-s test]
if [[-f test && -s test]]
if (-e test && ! –z test)

|| (OR) if [-f test1] || [-f test2]

if [[-f test1 || -f test2]]

Basic Shell Scripting 39

if condition examples

Example 1:
read input

if [$input == "hello"]; then

 echo hello;

else echo wrong ;

fi

Example 2
touch test.txt

if [-e test.txt]; then

 echo “file exist”

elif [! -s test.txt]; then

 echo “file empty”;

fi

What happens after
echo “hello world” >> test.txt

Basic Shell Scripting 40

Loop Constructs

• A loop is a block of code that iterates a list of

commands as long as the loop control condition

stays true

• Loop constructs

for, while and until

Basic Shell Scripting 41

for loop examples

Exmaple1:
for arg in `seq 1 4`

do

 echo $arg;

 touch test.$arg

done

How to delete test files using a loop?
rm test.[1-4]

Example 2:
for file in `ls /home/$USER`

do

 cat $file

done

Basic Shell Scripting 42

While Loop

• The while construct test for a condition at the top of a loop
and keeps going as long as that condition is true.

• In contrast to a for loop, a while is used when loop
repetitions is not known beforehand.

read counter

while [$counter -ge 0]

do let counter--

 echo $counter

done

Basic Shell Scripting 43

Until Loop

• The until construct test a condition at the top of
a loop, and stops looping when the condition is met
(opposite of while loop)

read counter

until [$counter -lt 0]

do let counter--

 echo $counter

done

Basic Shell Scripting 44

Switching Constructs - bash

• The case constructs are technically not loops since they do not iterate the

execution of a code block

#!/bin/sh

echo "Please talk to me ..."

while :

do

 read INPUT_STRING

 case $INPUT_STRING in

 hello)

 echo "Hello yourself!"

;;

bye)

echo "See you again!"

break

;;

*)

echo "Sorry, I don't understand"

;;

 esac

Done

echo "That's all folks!"

Basic Shell Scripting 45

Outline

• Introduction to Linux Shell

• Shell Scripting Basics

• Beyond Basic Shell Scripting

– Arithmetic Operations

– Arrays

– Flow Control
– Functions

• Advanced Text Processing Commands
(grep, sed, awk)

Basic Shell Scripting 46

Functions

• A function is a code block that implements a set of

operations. Code reuse by passing parameters,

• Syntax:
function_name () {
 command...
}

• By default all variables are global.

• Modifying a variable in a function changes it in the
whole script.

• Create a local variables using the local command,
which is invisible outside the function

local var=value
local varName

Basic Shell Scripting 47

Pass Arguments to Bash Scripts

• Note the difference between the arguments passed to the

script and the function.

• All parameters can be passed at runtime and accessed via
$1, $2, $3…, add {} when >=10

• $0: the shell script name

• Array variable called FUNCNAME contains the names of

all shell functions currently in the execution call stack.

• $* or $@: all parameters passed to a function

• $#: number of positional parameters passed to the

function

• $?: exist code of last command

• $$: PID of current process

Basic Shell Scripting 48

Function example

Basic Shell Scripting 49

#!/bin/bash

func_add () # define a simple function
{

local x=$1 # 1st argument to the function
local y=$2 # 2nd argument to the function
result=$((x + y))
echo "result is: " $result

}

a=3;b=4
echo "a= $a, b= $b"
result="nothing"
echo "result before calling the function is: " $result
func_add $a $b # note this is arguments to the function
echo "result by passing function arguments is: " $result
func_add $1 $2 # note this is command line arguments
echo "result by passing command line arguments is: " $result

Outline

• Introduction to Linux Shell

• Shell Scripting Basics

– Variables/Special Characters

– Arithmetic Operations

– Arrays

• Beyond Basic Shell Scripting

– Flow Control

– Functions

• Advanced Text Processing Commands
(grep, sed, awk)

Basic Shell Scripting 50

Advanced Text Processing Commands

• grep

• sed

• awk

Basic Shell Scripting 51

One slide about Regular Expression

• What are Regular Expressions (regex)?

o They describe patterns in strings

o These patterns can be used to modify strings

o Invented by Stephen Cole Kleene

o Idea of RegEx dates back to the 1950s

• Today, they come in different “flavors”

• PCRE, POSIX Basic & Extended RegEx, ECMA RegEx and loads more!

• Examples:

Basic Shell Scripting 52

Regex examples

• Anchors - ^ and $
^The matches any string that starts with The
end$ matches a string that ends with end
^The end$ exact string match (starts and ends with The end)
roar matches any string that has the text roar in it

• Quantifiers  - * + ? and {}
abc* matches a string that has ab followed by zero or more c
abc+ matches a string that has ab followed by one or more c
abc? matches a string that has ab followed by zero or one c
abc{2} matches a string that has ab followed by 2 c
abc{2,} matches a string that has ab followed by 2 or more c
abc{2,5} matches a string that has ab followed by 2 up to 5 c

• OR operator  -| or []
a(b|c) matches a string that has a followed by b or c
a[bc] same as previous

Basic Shell Scripting 53

grep & egrep

• grep: Unix utility that searches a pattern through either information

piped to it or files.
• egrep: extended grep, same as grep –E

• zgrep: compressed files.

• Usage: grep <options> <search pattern> <files>

• Options:

-i ignore case during search

-r,-R search recursively

-v invert match i.e. match everything except pattern

-l list files that match pattern

-L list files that do not match pattern

-n prefix each line of output with the line number within its input file.

-A num print num lines of trailing context after matching lines.

-B num print num lines of leading context before matching lines.

Basic Shell Scripting 54

grep Examples

• Search files containing the word bash in current directory

• Repeat above search using a case insensitive pattern match and
print line number that matches the search pattern

grep bash *

grep -in bash *

• Search files NOT containing the word bash in current directory

grep -v bash *

• Search files not matching certain name pattern

ls | grep –vi fun

Basic Shell Scripting 55

grep Examples

• grep OR

100 Thomas Manager Sales $5,000
200 Jason Developer Technology $5,500
300 Raj Sysadmin Technology $7,000
500 Randy Manager Sales $6,000

grep ‘Man\|Sales’ employee.txt

-> 100 Thomas Manager Sales $5,000

 300 Raj Sysadmin Technology $7,000
 500 Randy Manager Sales $6,000

• grep AND

grep –i ‘sys.*Tech’ employee.txt

-> 100300 Raj Sysadmin Technology $7,000

Basic Shell Scripting 56

sed

• "stream editor" to parse and transform information

– information piped to it or from files

• line-oriented, operate one line at a time and allow

regular expression matching and substitution.

• S substitution command

Basic Shell Scripting 57

sed commands and flags

Flags Operation Command Operation

-e combine multiple

commands

s substitution

-f read commands from file g global replacement

-h print help info p print

-n disable print i ignore case

-V print version info d delete

-r use extended regex G add newline

w write to file

x exchange pattern with hold

buffer

h copy pattern to hold buffer

; separate commands

Basic Shell Scripting 58

sed Examples

#!/bin/bash

My First Script

echo "Hello World!”

Basic Shell Scripting 59

sed Examples (2)

• Delete blank lines from a file

• Delete line n through m in a file

sed ’/^$/d’ hello.sh

#!/bin/bash

My First Script

echo "Hello World!"

sed ’2,4d’ hello.sh

#!/bin/bash

echo "Hello World!"

Basic Shell Scripting 60

sed Examples (1)

• Add flag -e to carry out multiple matches.

• Alternate form

• The default delimiter is slash (/), can be changed

cat hello.sh | sed -e ’s/bash/tcsh/g’ -e ’s/First/Second/g’

#!/bin/tcsh

My Second Script

echo "Hello World!"

sed ’s/bash/tcsh/g; s/First/Second/g’ hello.sh

#!/bin/tcsh

My Second Script

echo "Hello World!"

sed ’s:/bin/bash:/bin/tcsh:g’ hello.sh

#!/bin/tcsh

My First Script

echo "Hello World!"

Basic Shell Scripting 61

sed Examples (4)

• Replace-in-place with a backup file

• echo with sed

sed –i.bak ’/First/Second/i’ hello.sh

$ echo "shell scripting" | sed "s/[si]/?/g”
$?hell ?cr?pt?ng

$ echo "shell scripting 101" | sed "s/[0-9]/#/g”
$ shell scripting ###

Basic Shell Scripting 62

awk

• The awk text-processing language is useful for tasks such as:

– Tallying information from text files and creating reports from the

results.

– Adding additional functions to text editors like "vi".

– Translating files from one format to another.

– Creating small databases.
– Performing mathematical operations on files of numeric data.

• awk has two faces:

– It is a utility for performing simple text-processing tasks, and
– It is a programming language for performing complex text-

processing tasks.

Basic Shell Scripting 63

How Does awk Work

• awk reads the file being processed line by line.

• The entire content of each line is split into columns with

space or tab as the delimiter.

• $0 Print the entire line

• $1, $2, $3, ... for each column (if exists)

• NR number of records (lines)

• NF number of fields or columns in the current line.

• By default the field delimiter is space or tab. To change the

field delimiter use the -F<delimiter> command.

Basic Shell Scripting 64

awk Syntax

awk pattern {action}

pattern decides when action is performed

Actions:

• Most common action: print

• Print file dosum.sh:

awk ’{print $0}’ dosum.sh

• Print line matching files in all .sh files in current directory:

 awk ’/bash/{print $0}’ *.sh

Basic Shell Scripting 65

uptime
11:18am up 14 days 0:40, 5 users, load average: 0.15, 0.11,
0.17

uptime | awk ’{print $0}’
11:18am up 14 days 0:40, 5 users, load average: 0.15, 0.11,
0.17

uptime | awk ’{print $1,NF}’
11:18am 12

uptime | awk ’{print NR}’
1

uptime | awk –F, ’{print $1}’
11:18am up 14 days 0:40

for i in $(seq 1 3); do touch file${i}.dat ; done
for i in file* ; do
> prefix=$(echo $i | awk -F. ’{print $1}’)
> suffix=$(echo $i | awk -F. ’{print $NF}’)
> echo $prefix $suffix $i; done

file1 dat file1.dat
file2 dat file2.dat
file3 dat file3.dat

Basic Shell Scripting 66

Awk Examples

• Print list of files that are bash script files

• Print extra lines below patterns

awk '/^#\!\/bin\/bash/{print $0, FILENAME}’ *

→ #!/bin/bash Fun1.sh
#!/bin/bash fun_pam.sh
#!/bin/bash hello.sh
#!/bin/bash parm.sh

awk '/sh/{print;getline;print}' <hello.sh

#!/bin/bash

Basic Shell Scripting 67

More about grep, sed and awk

➢ grep:

– http://www.panix.com/~elflord/unix/grep.html

➢ sed:

– http://www.panix.com/~elflord/unix/sed.html

➢ awk:

– https://www.grymoire.com/Unix/Awk.html

Basic Shell Scripting 68

http://www.panix.com/~elflord/unix/grep.html
http://www.panix.com/~elflord/unix/sed.html
https://www.grymoire.com/Unix/Awk.html

What have we learned so far?

Introduction to Linux

OS used on HPC clusters

HPC User Environment 1

LSU and LONI HPC policy
Connect to our cluster
Use Software on HPC

HPC User Environment 2

How to submit jobs (PBS/Slurm)
Interactive jobs
Batch jobs

Basic Shell Scripting 69

Getting Help

▪ User Guides

▪ LSU HPC: http://www.hpc.lsu.edu/docs/guides.php#hpc

▪ LONI: http://www.hpc.lsu.edu/docs/guides.php#loni

▪ Documentation: http://www.hpc.lsu.edu/docs

▪ Archived tutorials:

http://www.hpc.lsu.edu/training/archive/tutorials.php

▪ Contact us

▪ Email ticket system: sys-help@loni.org

▪ Telephone Help Desk: 225-578-0900

Basic Shell Scripting 70

http://www.hpc.lsu.edu/docs/guides.php#hpc
http://www.hpc.lsu.edu/docs/guides.php#loni
http://www.hpc.lsu.edu/docs
http://www.hpc.lsu.edu/training/archive/tutorials.php
mailto:sys-help@loni.org

	Slide 1: Basic Shell Scripting
	Slide 2: What have we learned so far?
	Slide 3: Outline
	Slide 4: Linux System Architecture
	Slide 5: What is a Linux Shell
	Slide 6: Shell Comparison
	Slide 7: What can you do with a shell?
	Slide 8: Shell Scripting
	Slide 9: When NOT to use Shell Scripting…
	Slide 10: Script Example (~/.bashrc)
	Slide 11: Hello World
	Slide 12: Interactive and non-interactive shells
	Slide 13: Subshell
	Slide 14: Outline
	Slide 15: Variables
	Slide 16: Global and Local Variables
	Slide 17: Editing Variables
	Slide 18: Global and Local Variables - current shell and subshell
	Slide 19: How to inherit the variables in the script?
	Slide 20: List of Some Environment Variables
	Slide 21: Quotations
	Slide 22: Quotation - Examples
	Slide 23
	Slide 24: Special Characters (2)
	Slide 25: Outline
	Slide 26: Integer Arithmetic Operations
	Slide 27: Integer Arithmetic Operations
	Slide 28: Floating-Point Arithmetic Operations
	Slide 29: Outline
	Slide 30
	Slide 31: Array Operations (2)
	Slide 32: Array Operations (3)
	Slide 33: Outline
	Slide 34: Flow Control
	Slide 35: if statement
	Slide 36: File Operations
	Slide 37: Integer Comparisons
	Slide 38: String Comparisons
	Slide 39: Logical Operators
	Slide 40: if condition examples
	Slide 41: Loop Constructs
	Slide 42: for loop examples
	Slide 43: While Loop
	Slide 44: Until Loop
	Slide 45: Switching Constructs - bash
	Slide 46: Outline
	Slide 47: Functions
	Slide 48: Pass Arguments to Bash Scripts
	Slide 49: Function example
	Slide 50: Outline
	Slide 51: Advanced Text Processing Commands
	Slide 52: One slide about Regular Expression
	Slide 53: Regex examples
	Slide 54: grep & egrep
	Slide 55: grep Examples
	Slide 56: grep Examples
	Slide 57: sed
	Slide 58: sed commands and flags
	Slide 59: sed Examples
	Slide 60: sed Examples (2)
	Slide 61: sed Examples (1)
	Slide 62: sed Examples (4)
	Slide 63: awk
	Slide 64: How Does awk Work
	Slide 65: awk Syntax
	Slide 66
	Slide 67: Awk Examples
	Slide 68: More about grep, sed and awk
	Slide 69: What have we learned so far?
	Slide 70: Getting Help

