

HPC User Environment 2

Jason Li

HPC User Services LSU HPC / LONI

sys-help@loni.org

Louisiana State University, Baton Rouge Jul 10, 2024

- HPC User Environment 1
 - 1. Intro to HPC
 - 2. Getting started
 - 3. Into the cluster
 - 4. Software environment (modules)

- HPC User Environment 2
 - 1. Basic concepts
 - 2. Preparing my job
 - 3. Submitting my job
 - 4. Managing my jobs

HPC User Environment 2

- 1. Basic concepts
- 2. Preparing my job
- 3. Submitting my job
- 4. Managing my jobs

HPC User Environment 2

- 1. Basic concepts
 - 1) Previously on HPC User Environment 1...
 - 2) Job & Job schedulers
- 2. Preparing my job
 - 1) Basic principles
 - 2) Job duration (wall time)
 - 3) Number of nodes & cores
 - 4) Job queues
- 3. Submitting my job
 - 1) Interactive job
 - 2) Batch job
- 4. Managing my jobs
 - 1) Useful commands
 - 2) Monitoring job health

• HPC User Environment 2

1. Basic concepts

- 1) Previously on HPC User Environment 1...
- 2) Job & Job schedulers

2. Preparing my job

- 1) Basic principles
- 2) Job duration (wall time)
- 3) Number of nodes & cores
- 4) Job queues
- 3. Submitting my job
 - 1) Interactive job
 - 2) Batch job
- 4. Managing my jobs
 - 1) Useful commands
 - 2) Monitoring job health

1. Basic concepts

2. Preparing my job

3. Submitting my job

• HPC User Environment 2

1. Basic concepts

- 1) Previously on HPC User Environment 1...
- 2) Job & Job schedulers
- 2. Preparing my job
 - 1) Basic principles
 - 2) Job duration (wall time)
 - 3) Number of nodes & cores
 - 4) Job queues
- 3. Submitting my job
 - 1) Interactive job
 - 2) Batch job
- 4. Managing my jobs
 - 1) Useful commands
 - 2) Monitoring job health

1. Basic concepts

2. Preparing my job

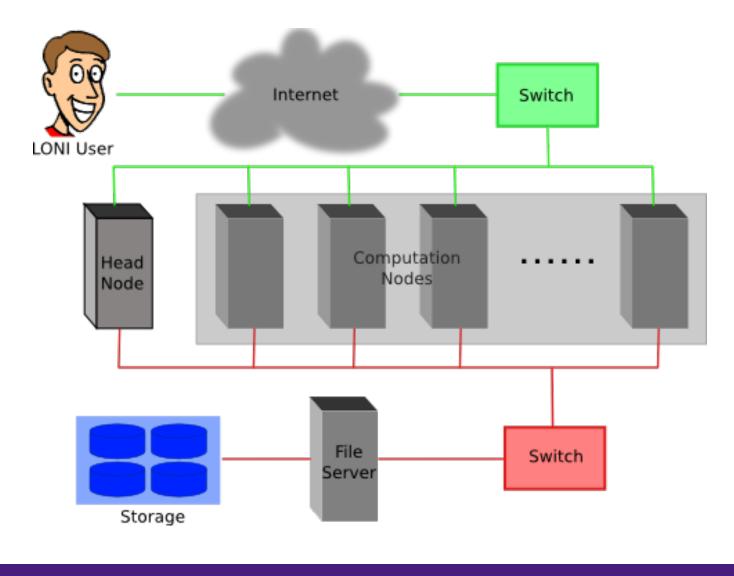
3. Submitting my job

Two things needed to run jobs on our clusters:

1) Account

2) Allocation

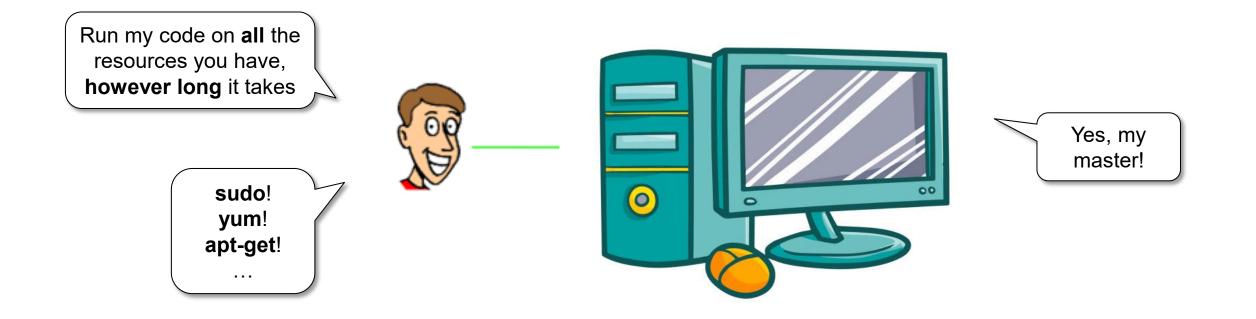
1. Basic concepts


2. Preparing my job

3. Submitting my job

4. Managing my jobs

1) Previously on HPC User Environment 1...

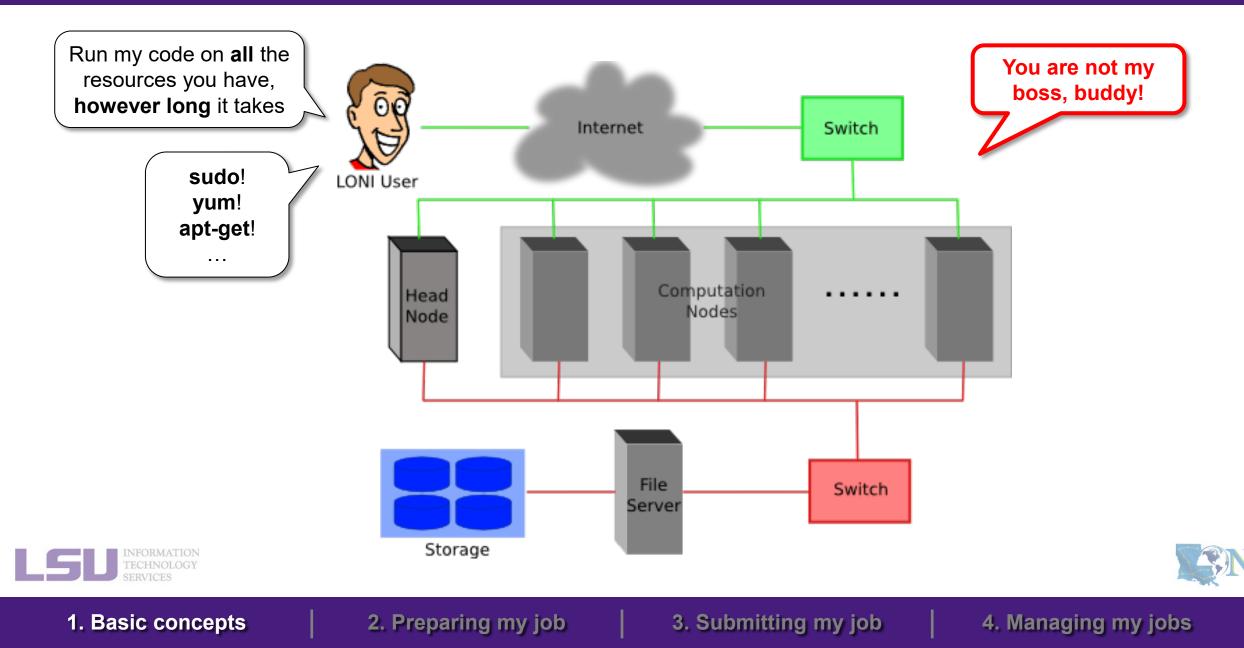

1. Basic concepts

2. Preparing my job

3. Submitting my job

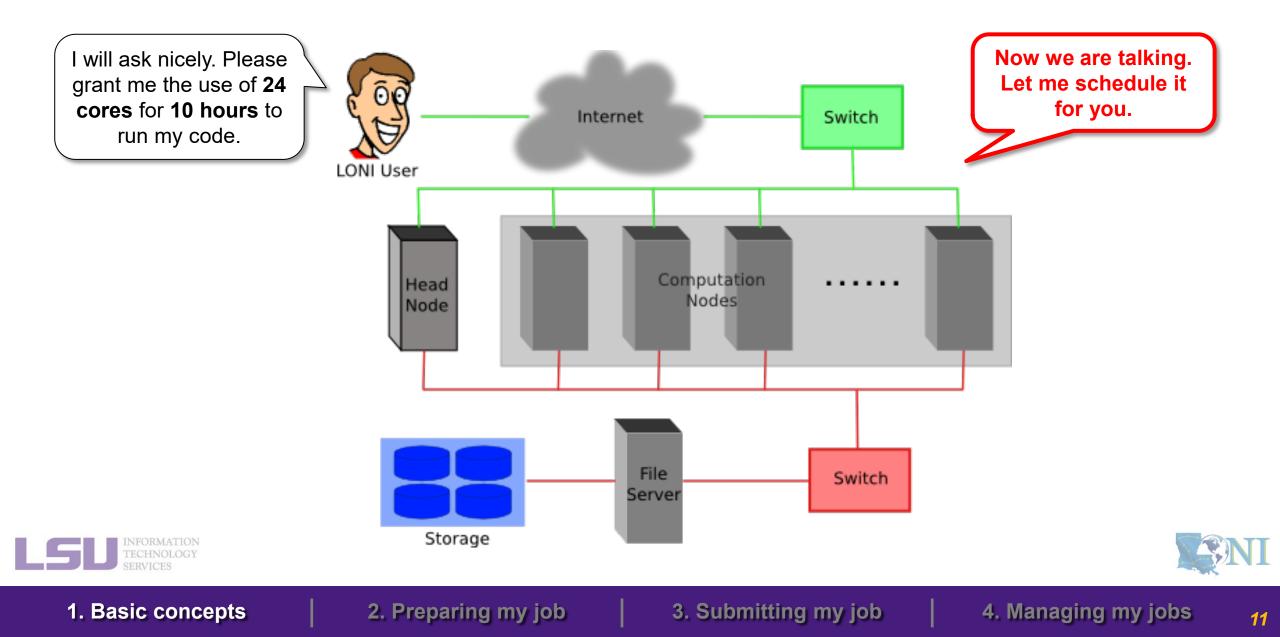
4. Managing my jobs

1. Basic concepts


2. Preparing my job

3. Submitting my job

4. Managing my jobs


1) Previously on HPC User Environment 1...

1) Previously on HPC User Environment 1...

• HPC User Environment 2

1. Basic concepts

1) Previously on HPC User Environment 1...

2) Job & Job schedulers

2. Preparing my job

- 1) Basic principles
- 2) Job duration (wall time)
- 3) Number of nodes & cores
- 4) Job queues
- 3. Submitting my job
 - 1) Interactive job
 - 2) Batch job
- 4. Managing my jobs
 - 1) Useful commands
 - 2) Monitoring job health

1. Basic concepts

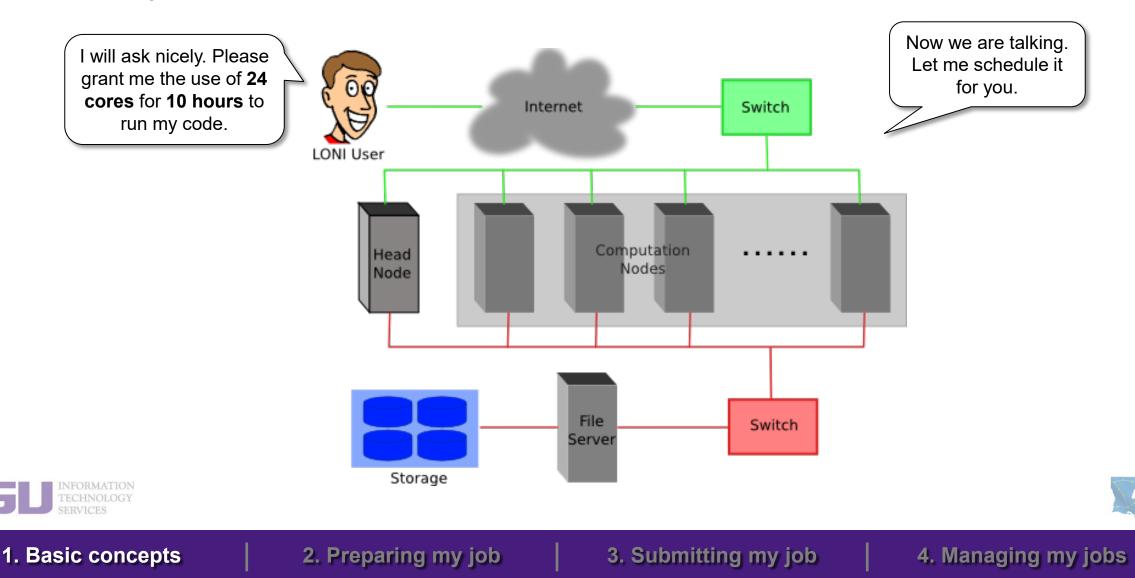
2. Preparing my job

3. Submitting my job

4. Managing my jobs

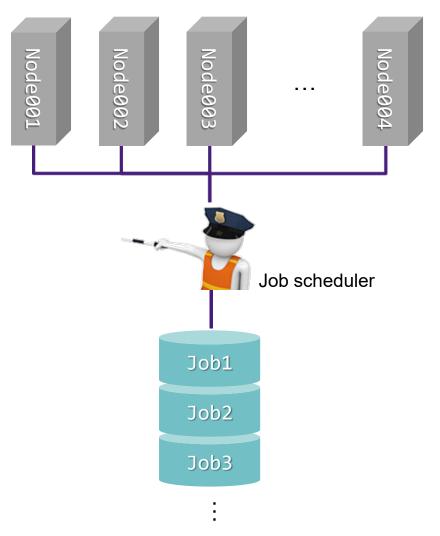
a) What's a "job"?

- A user's request to use a number of nodes/cores for a certain amount of time on a cluster.
- Calculation **MUST** be done via jobs (**NO** heavy calculation on head nodes!!)
- SUs deducted from allocations based on actual usage of each job.
 - Example:
 - My allocation: 50,000 SU
 - Running a job: 24 core * 10 hours = 240 SU
 - Balance: 49,760 SU



13

3. Submitting my job

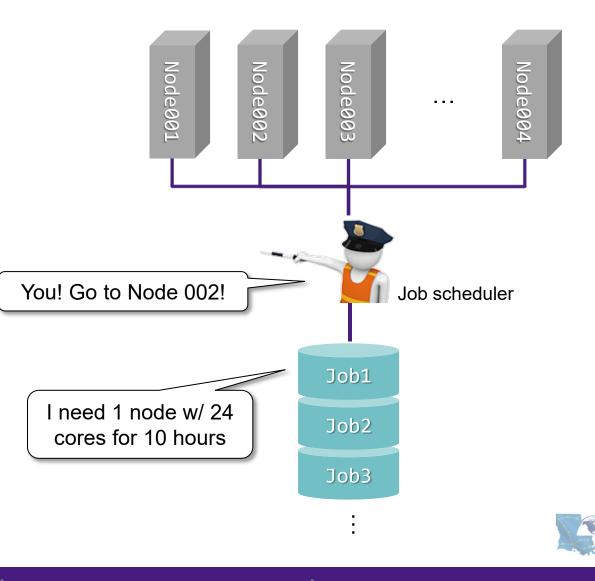


b) What's a "job scheduler"?

LSU

1. Basic concepts

2. Preparing my job


3. Submitting my job

4. Managing my jobs

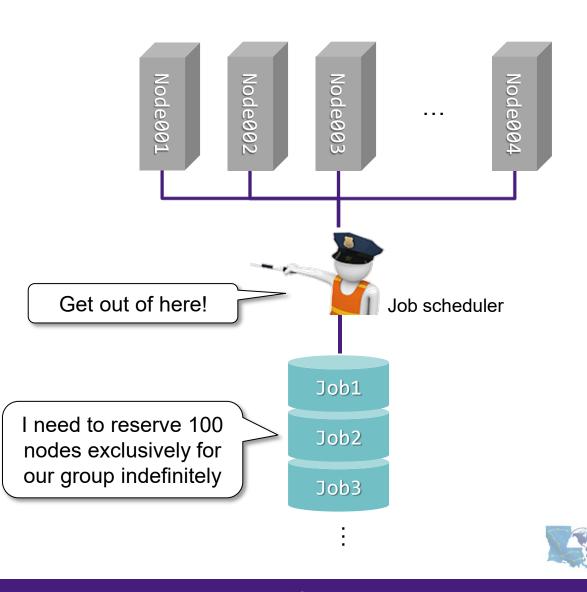
LSU

b) What's a "job scheduler"?

i. Decides which job runs when and where

1. Basic concepts

2. Preparing my job


3. Submitting my job

4. Managing my jobs

b) What's a "job scheduler"?

i. Decides which job runs when and where

ii. Enforces job policies

2. Preparing my job

3. Submitting my job

4. Managing my jobs

b) What's a "job scheduler"?

Job scheduler's responsibilities	Your responsibilities
 Decides which job runs when and where Enforces job policies 	 Decide a job's size and duration Understand the job queuing system and policies Submit/monitor/cancel jobs Diagnose job health

1. Basic concepts

2. Preparing my job

3. Submitting my job

b) What's a "job scheduler"?

1. Basic concepts

2. Preparing my job

3. Submitting my job

4. Managing my jobs

b) What's a "job scheduler"?

SNI

1. Basic concepts

2. Preparing my job

3. Submitting my job

4. Managing my jobs

- b) What's a "job scheduler"?
 - Previously on our clusters...

	LSU HPC	LONI
sium workload manager	Deep Bayou SuperMike III	QB3 QB4
PBS	SMIC	QB2

1. Basic concepts

2. Preparing my job

3. Submitting my job

4. Managing my jobs

- b) What's a "job scheduler"?
 - Previously on our clusters...

	LSU HPC	LONI
siur workload manager	Deep Bayou SuperMike III SMIC	QB3 QB4
PBS		QB2

22

1. Basic concepts

2. Preparing my job

3. Submitting my job

- b) What's a "job scheduler"?
 - Previously on our clusters...

	LSU HPC	LONI
siur workload manager	Deep Bayou SuperMike III SMIC	QB3 QB4
PBS		QB2

1. Basic concepts

2. Preparing my job

3. Submitting my job

b) What's a "job scheduler"?

SNI

1. Basic concepts

2. Preparing my job

3. Submitting my job

4. Managing my jobs

• HPC User Environment 2

1. Basic concepts

- 1) Previously on HPC User Environment 1...
- 2) Job & Job schedulers

2. Preparing my job

- 1) Basic principles
- 2) Job duration (wall time)
- 3) Number of nodes & cores
- 4) Job queues
- 3. Submitting my job
 - 1) Interactive job
 - 2) Batch job
- 4. Managing my jobs
 - 1) Useful commands
 - 2) Monitoring job health

1. Basic concepts

2. Preparing my job

3. Submitting my job

4. Managing my jobs

• HPC User Environment 2

1. Basic concepts

- 1) Previously on HPC User Environment 1...
- 2) Job & Job schedulers

2. Preparing my job

1) Basic principles

- 2) Job duration (wall time)
- 3) Number of nodes & cores
- 4) Job queues
- 3. Submitting my job
 - 1) Interactive job
 - 2) Batch job
- 4. Managing my jobs
 - 1) Useful commands
 - 2) Monitoring job health

1. Basic concepts

2. Preparing my job

3. Submitting my job

1) Basic principles

LSU

- Two basic principles of requesting resources
 - Amount of resources (node / core number, RAM, duration, ...)

Large enough ...

Small enough ...

27

1. Basic concepts

2. Preparing my job

3. Submitting my job

1) Basic principles

- Two basic principles of requesting resources
 - Amount of resources (node / core number, RAM, duration, ...)

Large enough	Small enough …
To successfully complete your job	To ensure quick turnaroundNot to waste resources for other users

SNI

1. Basic concepts

2. Preparing my job

3. Submitting my job

4. Managing my jobs

• HPC User Environment 2

1. Basic concepts

- 1) Previously on HPC User Environment 1...
- 2) Job & Job schedulers

2. Preparing my job

1) Basic principles

2) Job duration (wall time)

- 3) Number of nodes & cores
- 4) Job queues
- 3. Submitting my job
 - 1) Interactive job
 - 2) Batch job
- 4. Managing my jobs
 - 1) Useful commands
 - 2) Monitoring job health

1. Basic concepts

2. Preparing my job

3. Submitting my job

- What is it?
 - Real-world (wall) time, from start to end
 - Required!
 - There is a **maximum** you may request (see later)

1. Basic concepts

2. Preparing my job

3. Submitting my job

4. Managing my jobs

T

• FAQ

Q	Α
What if my command is still running when the wall time runs out?	 Job terminated, any running process killed
 What if all my commands in the job finished before the wall time runs out? 	Job exits successfully when all commands finished
 If my job exits before requested wall time, how many SUs will I be charged? 	 You will be charged based on your actual time used (if less than requested)
 In that case, why don't I just request maximum wall time every time? 	Your queuing time may be long

SNI

31

2. Preparing my job

3. Submitting my job

2) Job duration (wall time)

• Back to basic principles...

Large enough	Small enough …
To successfully complete your job	To ensure quick turnaroundNot to waste resources for other users

1. Basic concepts

2. Preparing my job

3. Submitting my job

4. Managing my jobs

• HPC User Environment 2

1. Basic concepts

- 1) Previously on HPC User Environment 1...
- 2) Job & Job schedulers

2. Preparing my job

- 1) Basic principles
- 2) Job duration (wall time)

3) Number of nodes & cores

- 4) Job queues
- 3. Submitting my job
 - 1) Interactive job
 - 2) Batch job
- 4. Managing my jobs
 - 1) Useful commands
 - 2) Monitoring job health

1. Basic concepts

2. Preparing my job

3. Submitting my job

4. Managing my jobs

• Previously in HPC User Environment 1 ...

Sup	erMIC		Deep Bayou		Deep Bayou		SuperMike III	
Hostname	smic.hpc.lsu.edu		Hostname	db1.lsu.edu		Hostname	mike.hpc.lsu.edu	
Peak Performance/TFlops	925		Peak Performance/TFlops	257		Peak Performance/TFlops	1,285	
Compute nodes	360		Compute nodes	13		Compute nodes	183	
Processor/node	2 10-core		Processor/node	2 24-core		Processor/node	2 32-core	
Processor Speed	2.8 GHz		Processor Speed	2.4 GHz		Processor Speed	2.6GHz	
Processor Type	Intel Xeon 64bit		Processor Type	Intel Cascade Lake Xeon 64bit		Processor Type	Intel Xeon Ice Lake	
Nodes with Accelerators	360		Nodes with Accelerators	13		Nodes with Accelerators	8	
Accelerator Type	Xeon Phi 7120P		Accelerator Type	2 x NVIDIA Volta V100S		Accelerator Type	4 NVIDIA A100	
OS	RHEL v6		OS	RHEL v7		OS	RHEL v8	
Vendor			Vendor	Dell		Vendor	Dell	
Memory per node	64 GB		Memory per node	192 GB		Memory per node	256/2048 GB	
Detailed Clus	ter Description		Detailed Cluster	Description		Detailed Clust	er Description	
<u>User Guide</u>			<u>User Guide</u>			<u>User (</u>	Guide	
Available Software			Available Software			<u>Available</u>	<u>Software</u>	

1. Basic concepts

2. Preparing my job

3. Submitting my job

4. Managing my jobs

3) Number of nodes & cores

- When submitting you job...
 - Required!

35

1. Basic concepts

2. Preparing my job

3. Submitting my job

• FAQ

Q	Α		
 My code runs slow. Can I request more nodes / cores to make it faster? 	 Not quite! Your code most likely is NOT using multiple nodes / cores, if: You do not know if it is using multiple nodes / cores You did not tell it to use multiple nodes / cores You are not familiar with names like "MPI" / "OpenMP" Underutilization is THE most common warning received on our clusters 		
 How many nodes / cores should I request? 	 In short: We can't answer that Each code / job is different. You must test to determine 		

1. Basic concepts

2. Preparing my job

3. Submitting my job

3) Number of nodes & cores

• Back to basic principles...

Large enough	Small enough …
To successfully complete your job	To ensure quick turnaroundNot to waste resources for other users

1. Basic concepts

2. Preparing my job

3. Submitting my job

4. Managing my jobs

Outlines

• HPC User Environment 2

1. Basic concepts

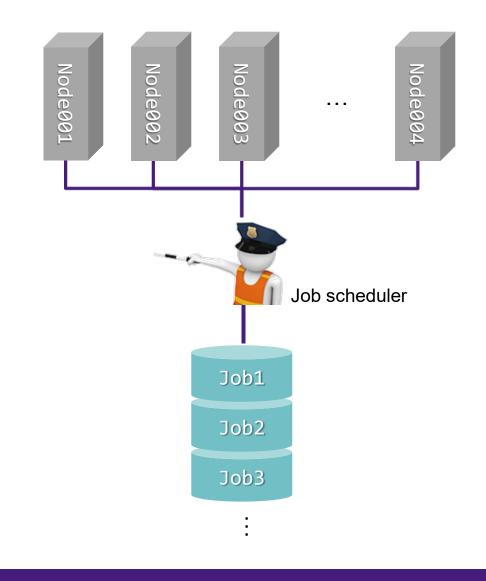
- 1) Previously on HPC User Environment 1...
- 2) Job & Job schedulers

2. Preparing my job

- 1) Basic principles
- 2) Job duration (wall time)
- 3) Number of nodes & cores

4) Job queues

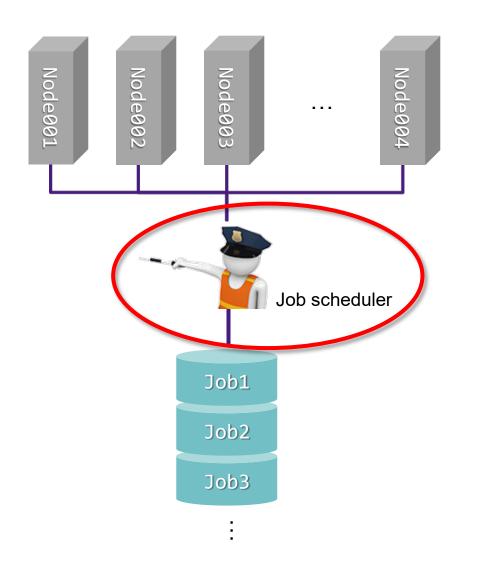
- 3. Submitting my job
 - 1) Interactive job
 - 2) Batch job
- 4. Managing my jobs
 - 1) Useful commands
 - 2) Monitoring job health


1. Basic concepts

2. Preparing my job

3. Submitting my job

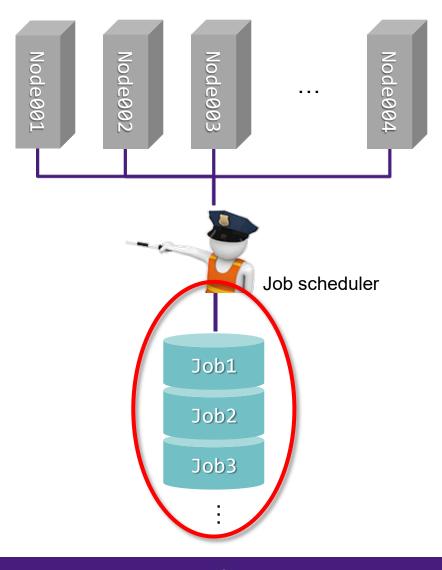
4. Managing my jobs


1. Basic concepts

2. Preparing my job

3. Submitting my job

4. Managing my jobs

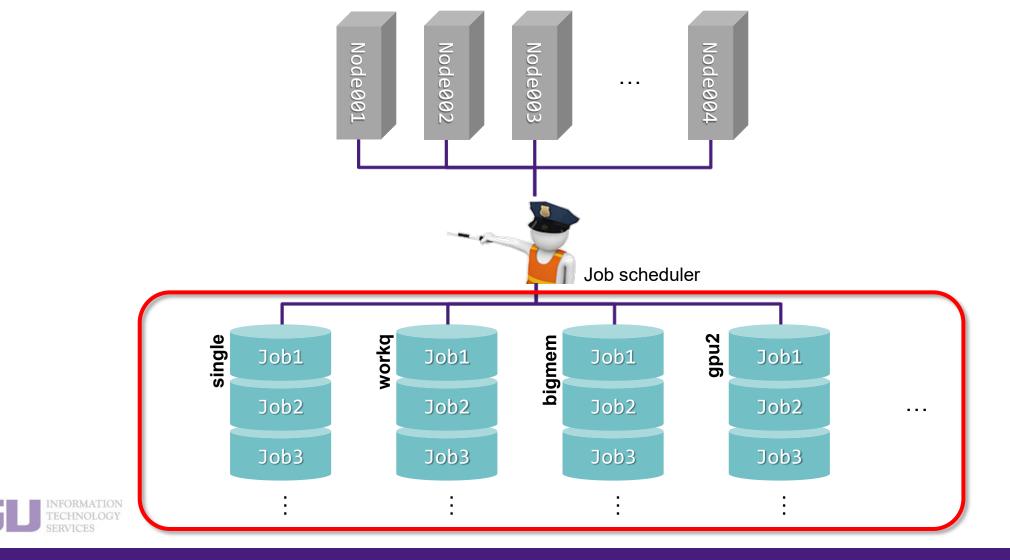

1. Basic concepts

2. Preparing my job

3. Submitting my job

4. Managing my jobs

SNI


1. Basic concepts

2. Preparing my job

3. Submitting my job

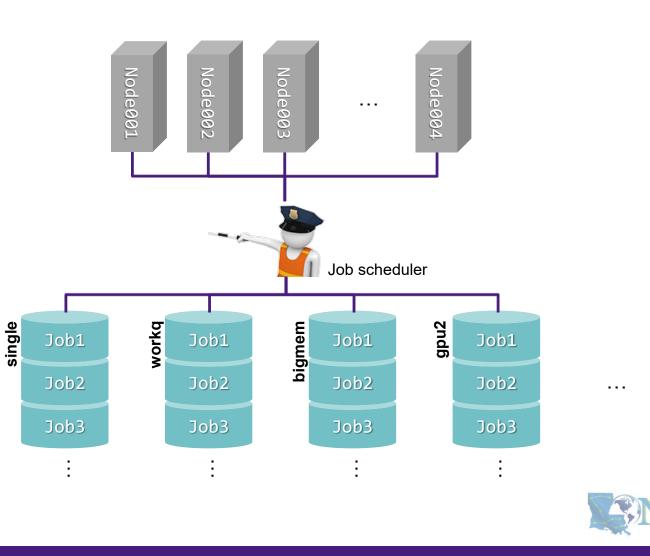
4. Managing my jobs

1. Basic concepts

2. Preparing my job

3. Submitting my job

4. Managing my jobs


42

SNI

a) Definition

- Lines where jobs are waiting to be executed
- Must pick one queue
- Goal: Use the resources efficiently

2. Preparing my job

3. Submitting my job

4. Managing my jobs

a) Definition

SNI

1. Basic concepts

2. Preparing my job

3. Submitting my job

4. Managing my jobs

b) Available queues

i. workq / checkpt

Purpose		 General purposes Most likely your default queue Difference: non-preemptable (workq) vs. preemptable (checkpt)
Names • All clusters: workq / checkpt		 All clusters: workq / checkpt
Pacauraa	Nodes	 Entire node(s) Up to a maximum
Resource availability Cores		All cores on the node(s)
Memory • All memory on the node(s)		All memory on the node(s)
Max duration		• 72 hours (3 days)

1. Basic concepts

2. Preparing my job

3. Submitting my job

Available queues b)

ii. ainala

ii.	single				
	Purpose		Only need a portion of the second secon	of one node	
	Name	es	All clusters: single		
		Nodes	• Portion of one node		
	Resource availability	Cores	 1 ~ all cores 		
		Memory	• A portion, proportion	nal to the number of requested	cores
	Max dur	ation	 168 hours (7 days) 	[QB-4]	
LSU	INFORMATION TECHNOLOGY SERVICES			→ 4 - Request: ´	ores, 256 GB memory GB / core 10 cores 0 GB memory
1. Ba	asic concepts	2.	Preparing my job	3. Submitting my job	4. Managing my jobs

ATTRACTION

IS SINGLE

EXPRESS

b) Available queues

iii. bigmem

Purpose		 Need large memory (larger than regular computing nodes have)
Names • All clusters: big		All clusters: bigmem
	Nodes	• Entire node(s)
Resource Cores		All cores on the node
Memory		All memory on the node
Max duration		• 72 hours (3 days)

SNI

1. Basic concepts

2. Preparing my job

3. Submitting my job

b) Available queues

iv.	GPU			gpuX : X = [Number of GPUs on one node]
	Purpo	se	Need GPU	
	Name	es	• QB-3: gpu2	 SMIC: gpu2 Deep Bayou: gpu2, gpu4 SuperMike 3: gpu4 QB-4: gpu2, gpu4
		Nodes	Entire node(s)	 Portion or entire node(s)
	Resource	Cores	All cores on the node(s)	Portion or all on the node [QB-4 / gpu4]
	availability	Memory	All memory on the node(s)	Portion or all on the node
		GPU	All GPUs on the node(s)	 • 1 ~ all GPU on the node(- Total: 64 cores, 4 GPUs → 16 cores / GPU
	Max dura	ation	• 72 hours (3 days)	- Request : 3 GPUs → 48 cores
LSU	INFORMATION TECHNOLOGY SERVICES			
1. Ba	sic concepts	2.	Preparing my job 3. Sub	mitting my job 4. Managing my jobs 48

1. Basic concepts

c) Queues by clusters (LSU HPC)

Cluster	Queue	Cores per node (ppn)	Max running jobs	Max nodes per user
	workq	20		
	checkpt	20		86
SuperMIC	single	1 ~ 20	45 (staba)	
·	gpu2	18,36	(global)	2
	bigmem	28		3
DeenBayou	gpu2	24,48		8
DeepBayou	gpu4	12,24,36,48	-	2
	workq	64		
	checkpt	64		96
SuperMike3	single	1 ~ 64 32 (global)		
	gpu4	16,32,48,64	(9/0007)	4
	bigmem	64		4
INFORMATION TECHNOLOGY SERVICES				

3. Submitting my job

2. Preparing my job

49

4. Managing my jobs

c) Queues by clusters (LONI)

Cluster	Queue	Cores per node (ppn)	Max running jobs	Max nodes per user
	workq	48		
	checkpt	40	20	48
QB-3	single	1 ~ 48	32 (global)	
	gpu2	48		4
	bigmem	48		2
	workq	64		
	checkpt	U-T		96
QB-4	single	1 ~ 64	32	
	gpu2	32,64	(global)	4
	gpu4	16,32,48,64		4
	bigmem	64		5

1. Bas	ic co	oncepts
--------	-------	---------

2. Preparing my job

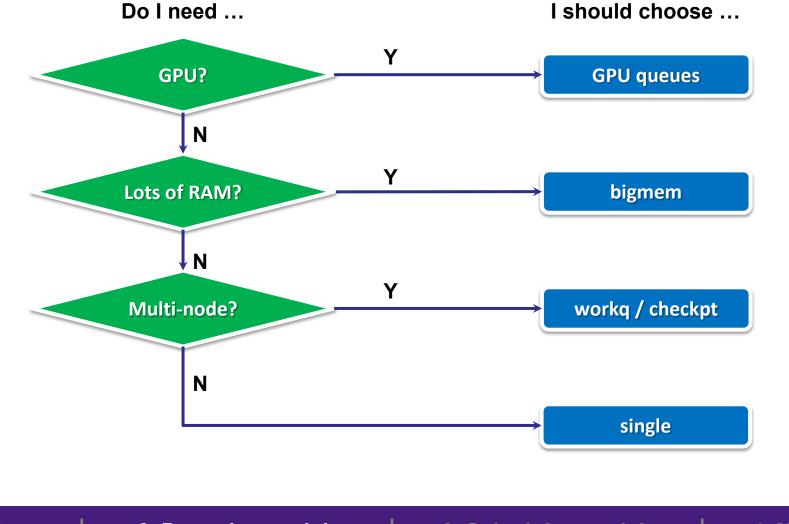
3. Submitting my job

4. Managing my jobs

d) Choose your queue

Large enough	Small enough …
To successfully complete your job	To ensure quick turnaroundNot to waste resources for other users

1. Basic concepts


2. Preparing my job

3. Submitting my job

4. Managing my jobs

d) Choose your queue

SNI

1. Basic concepts

2. Preparing my job

3. Submitting my job

4. Managing my jobs

d) Choose your queue

Test

My job …	Queue choice? (include number of nodes / cores)
 SMIC MPI code, needs 100 CPU cores Hint: SMIC has 20 cores / node 	workq / checkpt (5 nodes, 20 cores per node)
 SuperMike 3 Uses 3 GPUs to train a neural network Hint: SuperMike 3 has 64 cores / node, 4 GPUs / node → 16 cores / GPU 	gpu4 (1 node, 48 cores per node)
 QB-3 Single-core serial code Needs to store and process 30 GB data in RAM Hint: QB-3 has 192 GB RAM / node, 4 GB RAM / core 	single (1 node, 8 cores per node)

SNI

1. Basic concepts

2. Preparing my job

3. Submitting my job

4. Managing my jobs

e) Useful commands to check queues

i. sinfo: Detailed node health information of all queues

(base) [j	asonli	3@mike2 ~]\$	sinfo	
PARTITION	AVAIL	TIMELIMIT	NODES	STATE NODELIST
single*	up	7-00:00:00	2	inval mike[035,138]
single*	up	7-00:00:00	1	comp mike144
single*	up	7-00:00:00	58	alloc mike[008-026,031-034,036-044,046-050,141-143,148-162,167-169]
single*	up	7-00:00:00	108	idle mike[001-007,027-030,045,051-137,139,145-146,163-166,170-171]
single*	up	7-00:00:00	2	down mike[140,147]
checkpt	up	3-00:00:00	2	inval mike[035,138]
checkpt	up	3-00:00:00	1	comp mike144
checkpt	up	3-00:00:00	58	alloc mike[008-026,031-034,036-044,046-050,141-143,148-162,167-169]
checkpt	up	3-00:00:00	108	idle mike[001-007,027-030,045,051-137,139,145-146,163-166,170-171]
checkpt	up	3-00:00:00	2	down mike[140,147]
workq	up	3-00:00:00	2	inval mike[035,138]
workq	up	3-00:00:00	1	comp mike144
workq	up	3-00:00:00	58	alloc mike[008-026,031-034,036-044,046-050,141-143,148-162,167-169]
workq	up	3-00:00:00	108	idle mike[001-007,027-030,045,051-137,139,145-146,163-166,170-171]
workq	up	3-00:00:00	2	down mike[140,147]
bigmem	up	3-00:00:00	4	idle mike[172-175]
gpu	up	3-00:00:00	8	idle mike[176-183]
INFORMATION TECHNOLOGY				

55

1. Basic concepts

2. Preparing my job

3. Submitting my job

- e) Useful commands to check queues
 - ii. qfree : Free nodes in each queue

(base) [jasonli3@mike2 ~]\$ qfree
PBS total nodes: 183, free: 120, busy: 58, down: 2, use: 31%
PBS workq nodes: 171, free: 108, busy: 54, queued: 0
PBS single nodes: 171, free: 108, busy: 0, queued: 0
PBS checkpt nodes: 171, free: 108, busy: 4, queued: 0
PBS bigmem nodes: 4, free: 4, busy: 0, queued: 0
PBS gpu nodes: 8, free: 8, busy: 0, queued: 0

1. Basic concepts

2. Preparing my job

3. Submitting my job

4. Managing my jobs

1. Basic conceptsa) How job works

Summary

a) How job works on clustersb) Job scheduler and how it works

2. Preparing my job

- a) Basic principles
 - "large enough" and "small enough"
- b) Information you need to tell job scheduler:
 - Duration
 - Number of nodes & cores
 - Job queue

1. Basic concepts

2. Preparing my job

3. Submitting my job

4. Managing my jobs

Break

- 1) Have your terminal open and ready to connect to HPC
- 2) Download our testing code (π calculation) to your /home directory
 - <u>http://www.hpc.lsu.edu/training/weekly-materials/Downloads/pi_Jason.tar.gz</u>
 - Hint: use *wget* command

Outlines

• HPC User Environment 2

1. Basic concepts

- 1) Previously on HPC User Environment 1...
- 2) Job & Job schedulers

2. Preparing my job

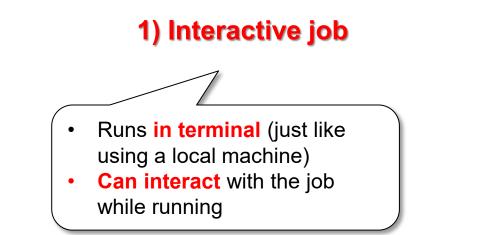
- 1) Basic principles
- 2) Job duration (wall time)
- 3) Number of nodes & cores
- 4) Job queues

3. Submitting my job

- 1) Interactive job
- 2) Batch job
- 4. Managing my jobs
 - 1) Useful commands
 - 2) Monitoring job health

1. Basic concepts

2. Preparing my job


3. Submitting my job

4. Managing my jobs

3. Submitting a job

• Two types of jobs:

2. Preparing my job

2) Batch job

- Submit to server and runs by itself, until finished or error
- Cannot interact with the job while running

3. Submitting my job

1. Basic concepts

60

4. Managing my jobs

3. Submitting a job

• Two types of jobs:

	1) Interactive job	2) Batch job
Pros	 Can interact and monitor with job in real time 	Submit and leave itRepeatable for complicated jobs
Cons	 Waiting for human intervention is the opposite of "high performance" 	 Cannot edit or interact with job while running
Ideal for	Debugging and testingLarge compilation	Production

INFORMATION TECHNOLOGY

2. Preparing my job

3. Submitting my job

4. Managing my jobs

Outlines

• HPC User Environment 2

- 1. Basic concepts
 - 1) Previously on HPC User Environment 1...
 - 2) Job & Job schedulers
- 2. Preparing my job
 - 1) Basic principles
 - 2) Job duration (wall time)
 - 3) Number of nodes & cores
 - 4) Job queues
- 3. Submitting my job
 - 1) Interactive job
 - 2) Batch job
- 4. Managing my jobs
 - 1) Useful commands
 - 2) Monitoring job health

1. Basic concepts

2. Preparing my job

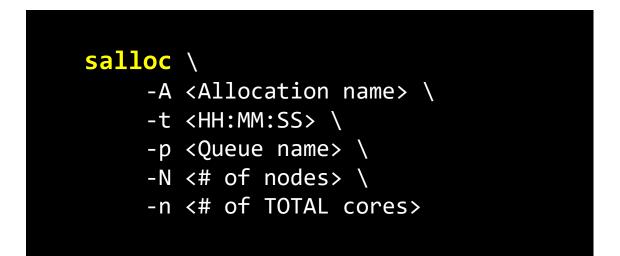
3. Submitting my job

4. Managing my jobs

a) Starting an interactive job (bare minimum)

salloc [options]

1. Basic concepts

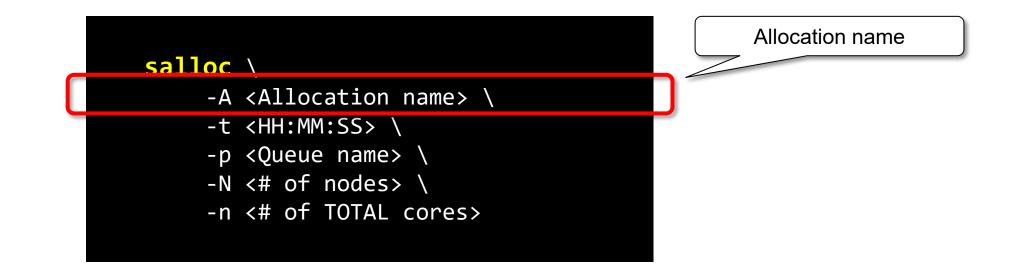

2. Preparing my job

3. Submitting my job

4. Managing my jobs

a) Starting an interactive job (bare minimum)

1. Basic concepts

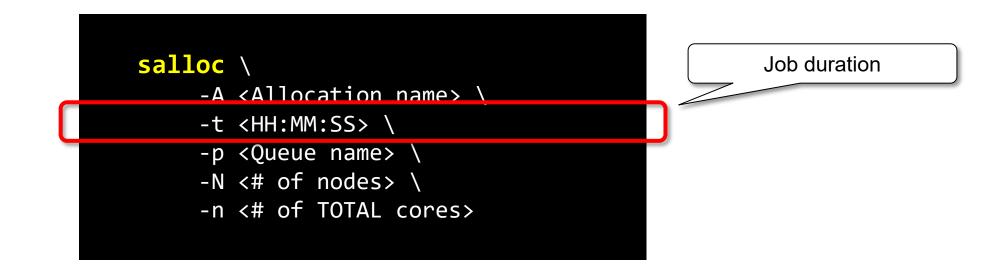

2. Preparing my job

3. Submitting my job

4. Managing my jobs

a) Starting an interactive job (bare minimum)

1. Basic concepts

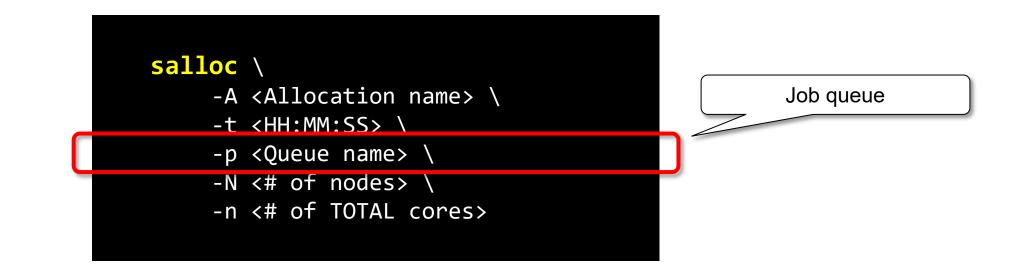

2. Preparing my job

3. Submitting my job

4. Managing my jobs

a) Starting an interactive job (bare minimum)

1. Basic concepts

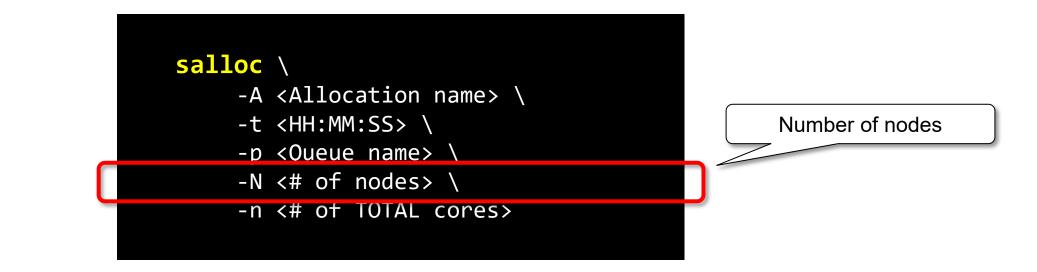

2. Preparing my job

3. Submitting my job

4. Managing my jobs

a) Starting an interactive job (bare minimum)

1. Basic concepts

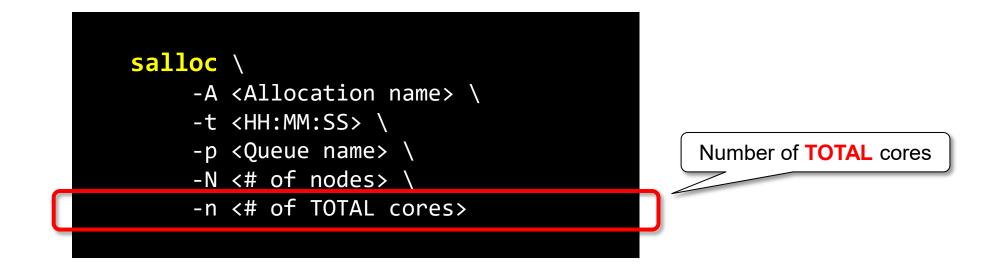

2. Preparing my job

3. Submitting my job

4. Managing my jobs

a) Starting an interactive job (bare minimum)

1. Basic concepts


2. Preparing my job

3. Submitting my job

4. Managing my jobs

a) Starting an interactive job (bare minimum)

1. Basic concepts

2. Preparing my job

3. Submitting my job

4. Managing my jobs

a) Starting an interactive job (bare minimum)

(base) [jasonli3@qbd1 pi]\$ salloc -A loni_loniadmin1 -N1 -n64 -p workq -t 1:00:00 salloc: Job estimates 64.00 SUs for -p workq --nodes=1 --ntasks=64 --cpus-per-task=1 salloc: Granted job allocation 23480 salloc: Waiting for resource configuration salloc: Nodes qbd454 are ready for job salloc: lua: Submitted job 23480 (base) [jasonli3@qbd454 pi]\$

1. Basic concepts

2. Preparing my job

3. Submitting my job

4. Managing my jobs

a) Starting an interactive job (bare minimum)

(base) [jasonli3@qbd1 pi]\$ salloc -A loni_loniadmin1 -N1 -n64 -p workq -t 1:00:00 salloc: Job estimates 64.00 SUS for -p workq --nodes=1 --ntasks=64 --cpus-per-task=1 salloc: Granted job allocation 23480 salloc: Waiting for resource configuration salloc: Nodes qbd454 are ready for job salloc: lua: Submitted job 23480 (base) [jasonli3@qbd454 pi]\$

1. Basic concepts

2. Preparing my job

3. Submitting my job

4. Managing my jobs

a) Starting an interactive job (bare minimum)

<pre>(base) [jasonli3@gbd1 pi]\$ salloc -A loni lonia</pre>	dmin1 -N1 -n64 -p workg -t 1:00:00
<pre>salloc: Job estimates 64.00 SUs for -p workq</pre>	nodes=1ntasks=64cpus-per-task=1
salloc: Granted job allocation 23480	
salloc: Waiting for resource configuration	
salloc: Nodes qbd454 are ready for job	
salloc: lua: Submitted job 23480	
(base) [jasonli3@qbd454 pi]\$	

1. Basic concepts

2. Preparing my job

3. Submitting my job

4. Managing my jobs

a) Starting an interactive job (bare minimum)

(base) [jasonli3@qbd1 bi]\$ salloc -A loni_loniadmin1 -N1 -n64 -p workq -t 1:00:00 salloc: Job estimates 64.00 SUs for -p workq --nodes=1 --ntasks=64 --cpus-per-task=1 salloc: Granted job allocation 23480 salloc: Waiting for resource configuration salloc: Nodes qbd454 are ready for job salloc: lua: Submitted job 23480 (base) [jasonli3@qbd454 bi]\$

Successfully started: on a computing node (3-digit number)

1. Basic concepts

2. Preparing my job

3. Submitting my job

4. Managing my jobs

a) Starting an interactive job (bare minimum)

(base) [jasonli3@qbd(pi]\$ salloc -A loni_loniadmin1 -N1 -n64 -p workq -t 1:00:00 salloc: Job estimates 64.00 SUs for -p workq --nodes=1 --ntasks=64 --cpus-per-task=1 salloc: Granted job allocation 23480 salloc: Waiting for resource configuration salloc: Nodes qbd454 are ready for job salloc: lua: Submitted job 23480 (base) [jasonli3@qbd454 pi]\$

Job starts in where the job was submitted

1. Basic concepts

2. Preparing my job

3. Submitting my job

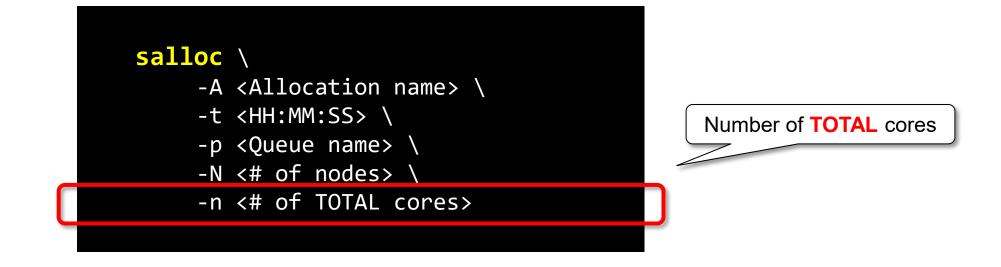
4. Managing my jobs

a) Starting an interactive job (bare minimum)

(base) [jasonli3@qbd1 pi]\$ salloc -A loni_loniadmin1 -N1 -n64 -p workq -t 1:00:00 salloc: Job estimates 64.00 SUs for -p workq --nodes=1 --ntasks=64 --cpus-per-task=1 salloc: Granted job allocation 23480 salloc: Waiting for resource configuration salloc: Nodes qbd454 are ready for job salloc: lua: Submitted job 23480 (base) [jasonli3@qbd454 pi]\$

Once a job starts, **type and run commands** as you normally do.

75

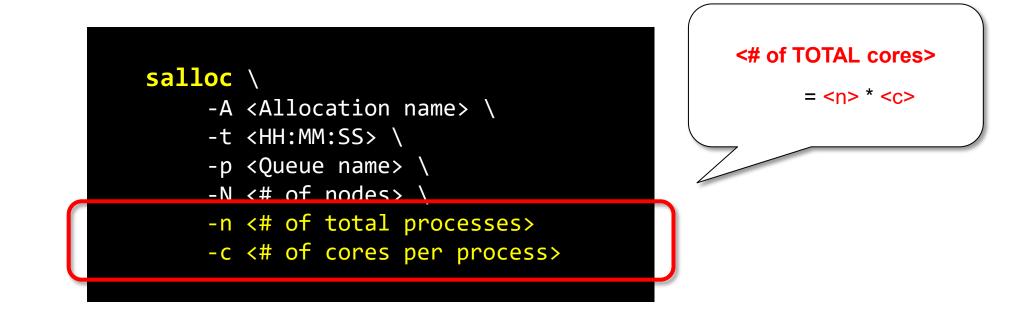

1. Basic concepts

2. Preparing my job

3. Submitting my job

b) Starting an MPI / OpenMP hybrid job (For those who use it)

1. Basic concepts


2. Preparing my job

3. Submitting my job

4. Managing my jobs

b) Starting an MPI / OpenMP hybrid job (For those who use it)

1. Basic concepts

2. Preparing my job

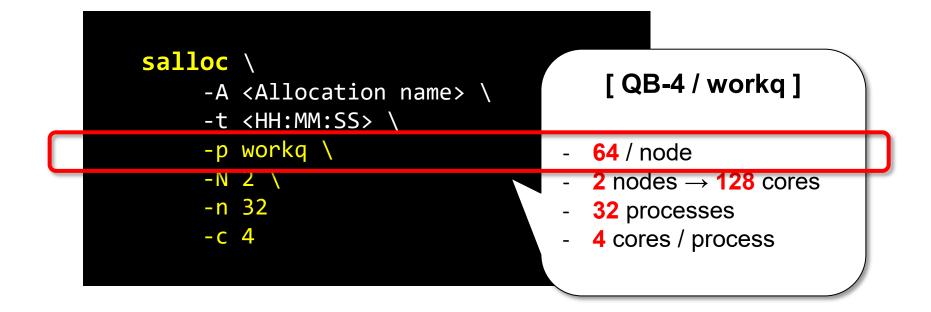
3. Submitting my job

4. Managing my jobs

b) Starting an MPI / OpenMP hybrid job (For those who use it)

NI

1. Basic concepts


2. Preparing my job

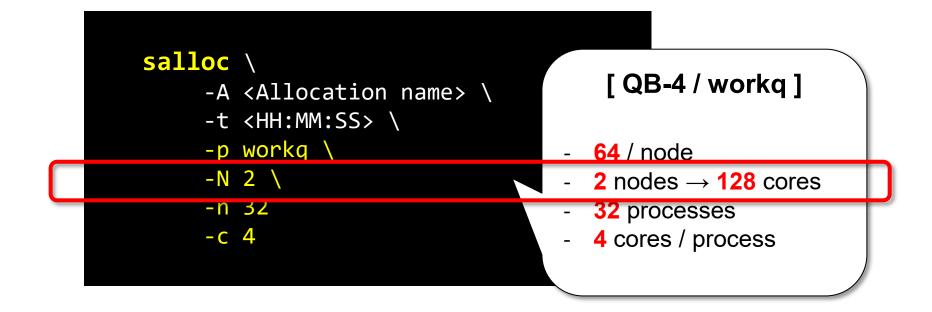
3. Submitting my job

4. Managing my jobs

b) Starting an MPI / OpenMP hybrid job (For those who use it)

XIII

1. Basic concepts


2. Preparing my job

3. Submitting my job

4. Managing my jobs

b) Starting an MPI / OpenMP hybrid job (For those who use it)

1. Basic concepts

2. Preparing my job

3. Submitting my job

4. Managing my jobs

b) Starting an MPI / OpenMP hybrid job (For those who use it)

1. Basic concepts

2. Preparing my job

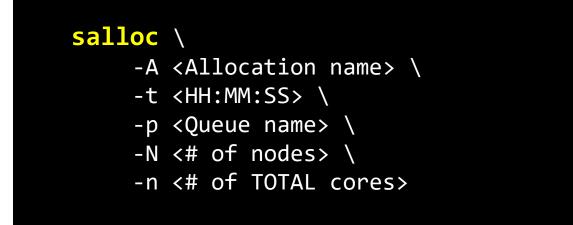
3. Submitting my job

4. Managing my jobs

b) Starting an MPI / OpenMP hybrid job (For those who use it)

SNI

1. Basic concepts

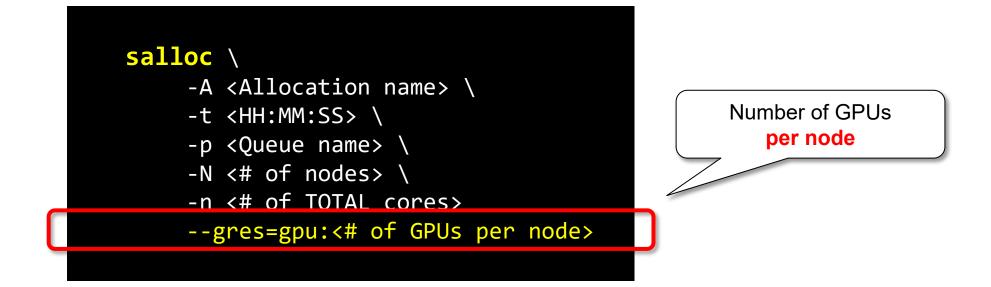

2. Preparing my job

3. Submitting my job

4. Managing my jobs

c) Starting a GPU job (For those who use it)

1. Basic concepts


2. Preparing my job

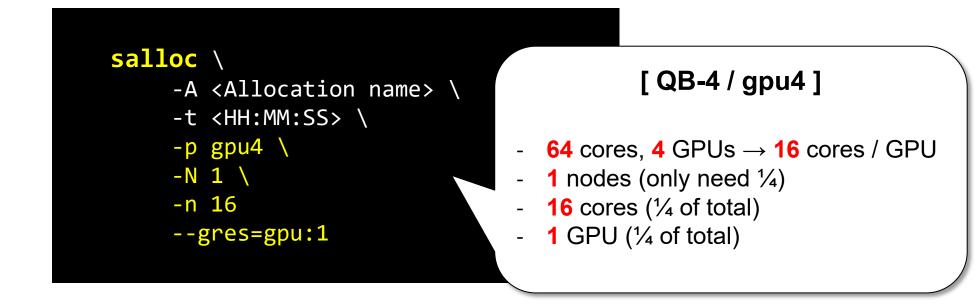
3. Submitting my job

4. Managing my jobs

c) Starting a GPU job (For those who use it)

SNI

1. Basic concepts


2. Preparing my job

3. Submitting my job

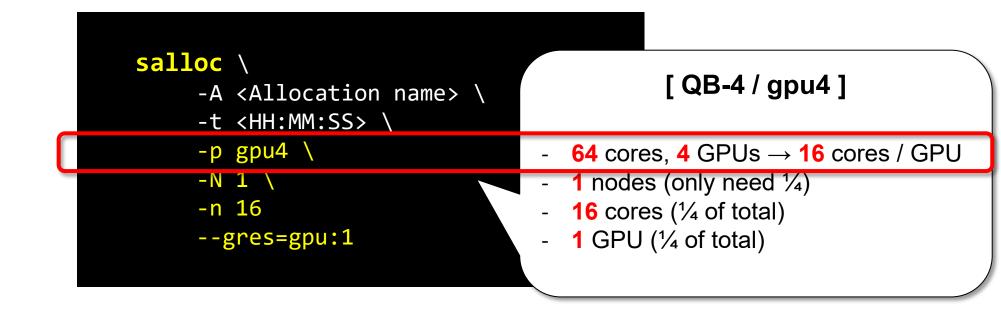
4. Managing my jobs

c) Starting a GPU job (For those who use it)

SNI

1. Basic concepts

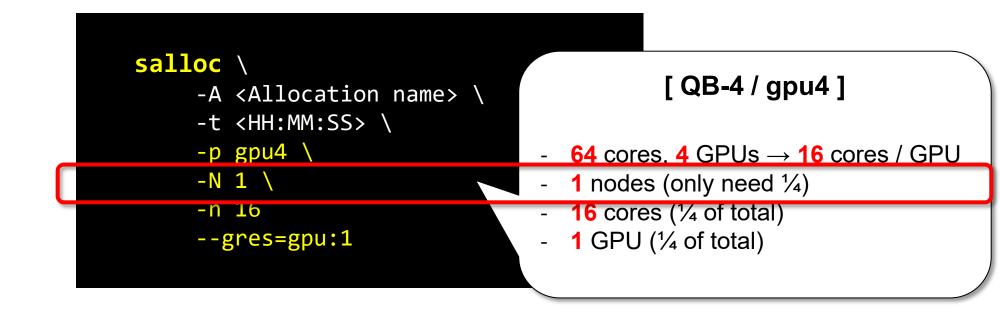
2. Preparing my job


3. Submitting my job

y job 4. Managing my jobs

jobs <u>85</u>

c) Starting a GPU job (For those who use it)


1. Basic concepts

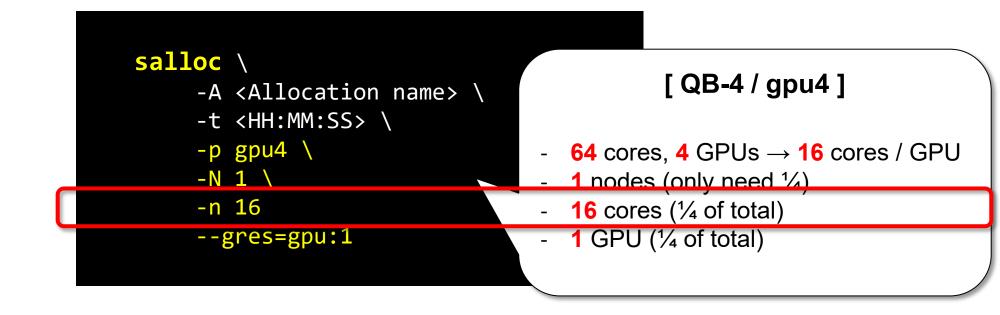
. .

3. Submitting my job

c) Starting a GPU job (For those who use it)

SNI

1. Basic concepts


2. Preparing my job

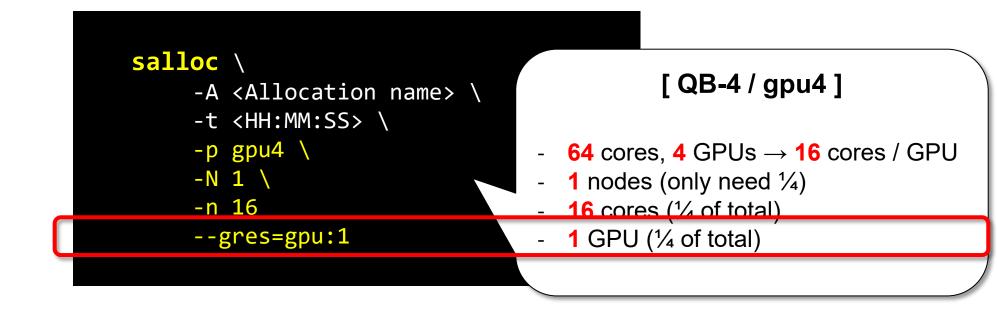
3. Submitting my job

4. Managing my jobs

c) Starting a GPU job (For those who use it)

SNI

1. Basic concepts


2. Preparing my job

3. Submitting my job

4. Managing my jobs

Starting a GPU job (For those who use it) C)

1. Basic concepts

2. Preparing my job

3. Submitting my job

4. Managing my jobs

d) Other useful flags

Flag		Description	
x11		Enable x11 forwarding for GUI (exclusive to interactive job)	
-J		Job name	
dependency=afterok:[jobid]		Dependent job (starts after another job finishes)	
mail-type	FAIL	Send email when	Job aborts / fails
	BEGIN		Job begins
	END		Job ends
mail-user		Email address (will check against registered institutional email)	

[1] <u>http://www.hpc.lsu.edu/docs/slurm.php</u>

90

1. Basic concepts

2. Preparing my job

3. Submitting my job

e) Running an interactive job

– After job started:

Serial (Single-thread)	Parallel (MPI)	
 Run commands as you normally do 	Method 1 (Recommended)	
<pre>\$ <executable> [options]</executable></pre>	<pre>\$ srun -N[] -n[] -c[] <mpi_executable> [options]</mpi_executable></pre>	
	Method 2	
	<pre>\$ module load <desired mpi=""> \$ export OMP_NUM_THREADS=[]</desired></pre>	
	<pre>\$ mpirun -np [] <mpi_executable> [options]</mpi_executable></pre>	

1. Basic concepts

2. Preparing my job

3. Submitting my job

4. Managing my jobs

f) Useful environmental variables

Variable	Description	
\$SLURM_JOBID	Job ID	
<pre>\$SLURM_SUBMIT_DIR</pre>	Job submit directory	
<pre>\$SLURM_JOB_NODELIST</pre>	A temp file, contains a list of allocated nodes' names (useful for MPI)	
\$SLURM_NNODES	Number of allocated nodes	
\$SLURM_NTASKS	Number of processes (tasks)	

[1] <u>http://www.hpc.lsu.edu/docs/slurm.php</u>

92

1. Basic concepts

2. Preparing my job

3. Submitting my job

Outlines

• HPC User Environment 2

1. Basic concepts

- 1) Previously on HPC User Environment 1...
- 2) Job & Job schedulers

2. Preparing my job

- 1) Basic principles
- 2) Job duration (wall time)
- 3) Number of nodes & cores
- 4) Job queues

3. Submitting my job

- 1) Interactive job
- 2) Batch job
- 4. Managing my jobs
 - 1) Useful commands
 - 2) Monitoring job health

1. Basic concepts

2. Preparing my job

3. Submitting my job

4. Managing my jobs

• What do you need?

- i. A **batch file** (containing job parameters and bash scripts)
- ii. Submit this batch file with **submission command**

1. Basic concepts

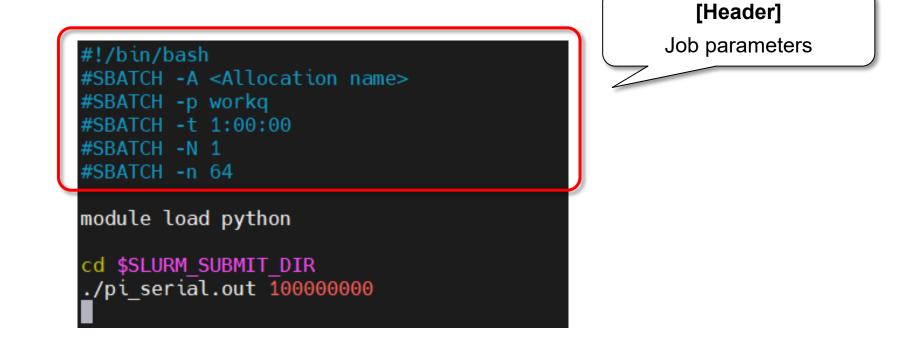
2. Preparing my job

3. Submitting my job

4. Managing my jobs

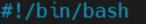
INFORMATION TECHNOLOGY

1. Basic concepts


a) Batch file

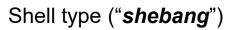
a) Batch file

1. Basic concepts


2. Preparing my job

3. Submitting my job

4. Managing my jobs

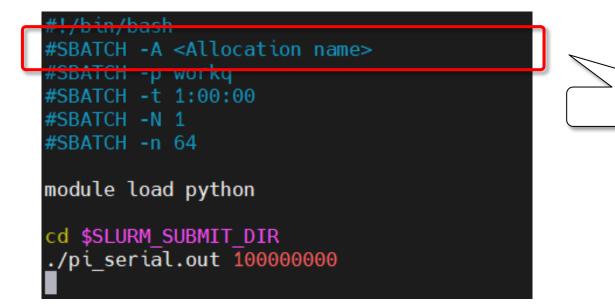

a) Batch file

#SBATCH -A <Attocatton name> #SBATCH -p workq #SBATCH -t 1:00:00 #SBATCH -N 1 #SBATCH -n 64

module load python

cd \$SLURM_SUBMIT_DIR
_/pi_serial.out 100000000

1. Basic concepts


2. Preparing my job

3. Submitting my job

4. Managing my jobs

a) Batch file

Allocation name

NI

1. Basic concepts

2. Preparing my job

3. Submitting my job

4. Managing my jobs

a) Batch file

1. Basic concepts

2. Preparing my job

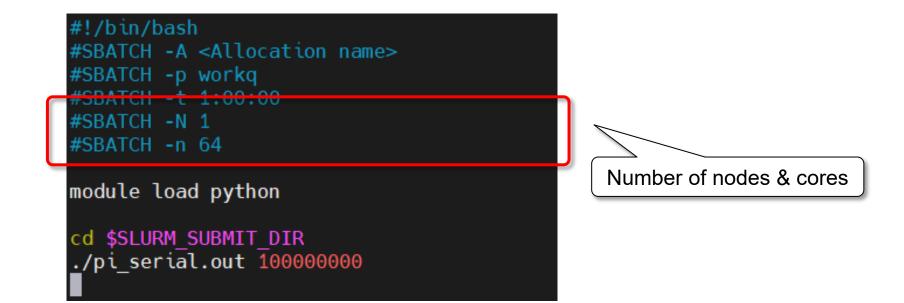
3. Submitting my job

4. Managing my jobs

a) Batch file

100

1. Basic concepts


2. Preparing my job

3. Submitting my job

4. Managing my jobs

a) Batch file

101

1. Basic concepts

2. Preparing my job

3. Submitting my job

4. Managing my jobs

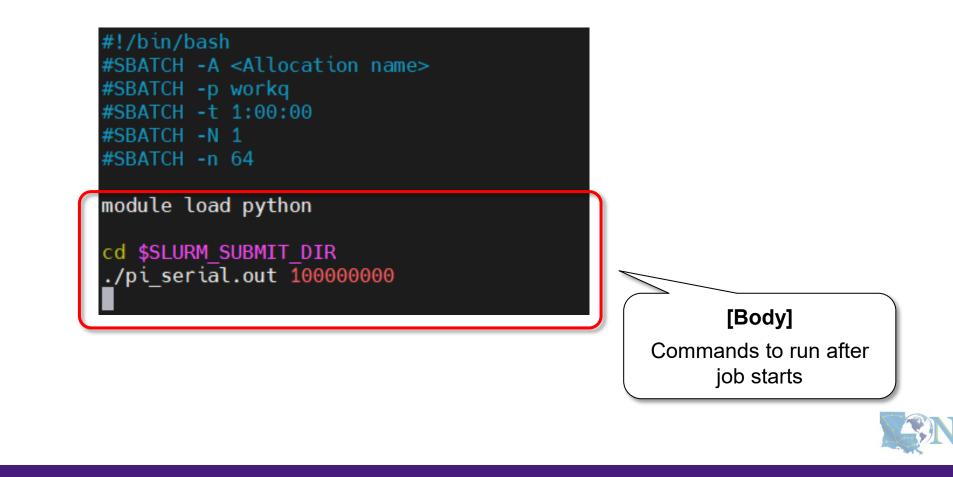
a) Batch file

Flag		Description	
-0		Standard output file (exclusive to batch job)	
-e		Standard error file (exclusive to batch job)	
-J		Job name	
dependency=afterok:[jobid]		Dependent job (starts after another job finishes)	
mail-type	FAIL	Send email when	Job aborts / fails
	BEGIN		Job begins
	END		Job ends
mail-user		Email address (will check against registered institutional email)	

3. Submitting my job

2. Preparing my job

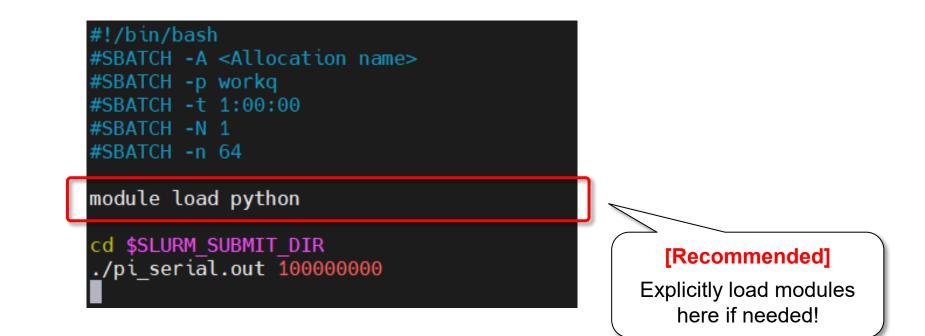
1. Basic concepts


[1] <u>http://www.hpc.lsu.edu/docs/slurm.php</u>

4. Managing my jobs

a) Batch file

1. Basic concepts


2. Preparing my job

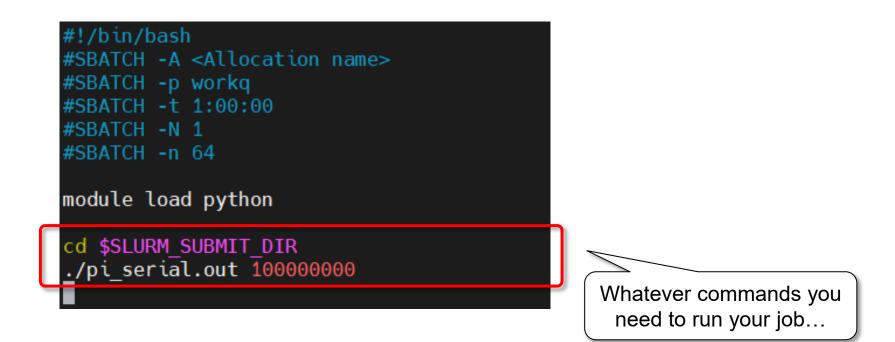
3. Submitting my job

4. Managing my jobs

a) Batch file

SNI

1. Basic concepts


2. Preparing my job

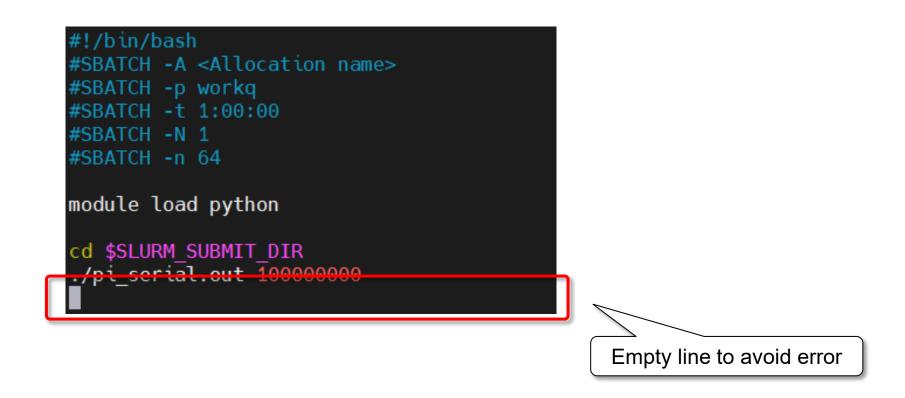

3. Submitting my job

4. Managing my jobs

a) Batch file

1. Basic concepts

INFORMATION TECHNOLOGY


2. Preparing my job

3. Submitting my job

4. Managing my jobs

a) Batch file

1. Basic concepts

2. Preparing my job

3. Submitting my job

4. Managing my jobs

b) Submit

sbatch <batch file name>

1. Basic concepts

2. Preparing my job

3. Submitting my job

4. Managing my jobs

Outlines

• HPC User Environment 2

- 1. Basic concepts
 - 1) Previously on HPC User Environment 1...
 - 2) Job & Job schedulers
- 2. Preparing my job
 - 1) Basic principles
 - 2) Job duration (wall time)
 - 3) Number of nodes & cores
 - 4) Job queues
- 3. Submitting my job
 - 1) Interactive job
 - 2) Batch job

4. Managing my jobs

- 1) Useful commands
- 2) Monitoring job health

1. Basic concepts

2. Preparing my job

3. Submitting my job

4. Managing my jobs

Running jobs on HPC ≠ "Submit and done"

- Monitoring and managing jobs are part of the work

1. Basic concepts

2. Preparing my job

3. Submitting my job

4. Managing my jobs

Outlines

• HPC User Environment 2

- 1. Basic concepts
 - 1) Previously on HPC User Environment 1...
 - 2) Job & Job schedulers
- 2. Preparing my job
 - 1) Basic principles
 - 2) Job duration (wall time)
 - 3) Number of nodes & cores
 - 4) Job queues
- 3. Submitting my job
 - 1) Interactive job
 - 2) Batch job
- 4. Managing my jobs
 - 1) Useful commands
 - 2) Monitoring job health

1. Basic concepts

2. Preparing my job

3. Submitting my job

4. Managing my jobs

(Command	Description
		List all jobs
	-j <job id=""></job>	List the job of specific ID
squeue	-u <username></username>	List all jobs belong to a specific user
	-p <queue name=""></queue>	List all jobs in a particular queue
	start	Estimated start time of queuing jobs
<pre>scontrol show job <job id=""></job></pre>		Show job details
<pre>scancel <job id=""></job></pre>		Cancel <job id=""></job>

Alter jobs after submission? \rightarrow NOT allowed!

[1] <u>http://www.hpc.lsu.edu/docs/slurm.php</u>

111

2. Preparing my job

Outlines

• HPC User Environment 2

- 1. Basic concepts
 - 1) Previously on HPC User Environment 1...
 - 2) Job & Job schedulers
- 2. Preparing my job
 - 1) Basic principles
 - 2) Job duration (wall time)
 - 3) Number of nodes & cores
 - 4) Job queues
- 3. Submitting my job
 - 1) Interactive job
 - 2) Batch job

4. Managing my jobs

- 1) Useful commands
- 2) Monitoring job health

1. Basic concepts

2. Preparing my job

3. Submitting my job

4. Managing my jobs

A job requesting n cores ≠ A job utilizing n cores

- Goal
 - Use the allocated resources (CPU cores, RAM, time, ...) as fully and efficiently as possible
 - No serious underutilizing
 - No serious overutilizing
- Things to check
 - CPU / GPU load
 - Memory usage

113

- a) Method 1: qshow <Job ID>
 - Displays diagnostic information of a running job
 - Can be run on head node

114

1. Basic concepts

3. Submitting my job

a) Method 1: qshow <Job ID>

(base) [jasonli3@mike4 ~]\$ gshow 38581 PBS job: 38581, nodes: 1 Hostname Days Load CPU U# (User:Process:VirtualMemory:Memory:Hours) 278 64.12 6033 68 yxan:lmp mik+:524M:104M:13.5 yxan:lmp mik+:524M:104M:13.5 yxan:lmp mik+:533M:107M:13.5 yxan:lmp mik+:748M:128M:13.5 mike145 yxan:lmp mik+:738M:124M:13.5 yxan:lmp mik+:520M:104M:13.5 yxan:lmp mik+:587M:109M:13.5 yxan:lmp mik+:743M:128M:13.5 yxan:lmp mik+:696M:118M:13.5 yxan:lmp mik+:528M:101M:13.5 yxan:lmp mik+:578M:108M:13.5 yxan:lmp mik+:528M:105M:13.5 yxan:lmp mik+:528M:106M:13.5 yxan:lmp mik+:520M:105M:13.5 yxan:lmp mik+:561M:106M:13.5 yxan:lmp mik+:583M:109M:13.5 yxan:lmp mik+:520M:103M:13.5 yxan:lmp mik+:524M:103M:13.5 yxan:lmp mik+:738M:125M:13.5 yxan:lmp mik+:709M:119M:13.5 yxan:lmp mik+:524M:103M:13.5 yxan:lmp mik+:574M:107M:13.5 yxan:lmp mik+:697M:121M:13.5 yxan:lmp mik+:658M:115M:13.5 yxan:lmp mik+:528M:102M:13.5 yxan:lmp mik+:557M:108M:13.5 yxan:lmp mik+:524M:105M:13.5 yxan:lmp mik+:524M:105M:13.5 yxan:lmp mik+:515M:102M:13.5 yxan:lmp_mik+:520M:104M:13.5_yxan:lmp_mik+:567M:108M:13.5_yxan:lmp_mik+:566M:108M:13.5_yxan:lmp_mik+:519M:103M:13.5_yxan:lmp_mik+:536M:105M:13.5 yxan:lmp_mik+:519M:104M:13.5_yxan:lmp_mik+:528M:103M:13.5_yxan:lmp_mik+:519M:103M:13.5_yxan:lmp_mik+:524M:104M:13.5_yxan:lmp_mik+:524 yxan:lmp_mik+:528M:104M:13.5_yxan:lmp_mik+:516M:101M:13.5_yxan:lmp_mik+:515M:101M:13.5_yxan:lmp_mik+:515M:104M:13.5_yxan:lmp_mik+:520M:101M:13.5_ yxan:lmp_mik+:524M:103M:13.5_yxan:lmp_mik+:520M:101M:13.5_yxan:lmp_mik+:515M:103M:13.5_yxan:lmp_mik+:516M:102M:13.5_yxan:lmp_mik+:587M:110M:13.5_ yxan:lmp_mik+:558M:108M:13.5_yxan:lmp_mik+:524M:102M:13.5_yxan:lmp_mik+:537M:103M:13.5_yxan:lmp_mik+:572M:109M:13.5_yxan:lmp_mik+:549M:104M:13.5_ yxan:lmp_mik+:519M:103M:13.5_yxan:lmp_mik+:528M:104M:13.5_yxan:lmp_mik+:520M:104M:13.5_yxan:lmp_mik+:515M:103M:13.5_yxan:lmp_mik+:515 yxan:lmp_mik+:520M:105M:13.5_yxan:lmp_mik+:528M:105M:13.5_yxan:lmp_mik+:515M:103M:13.5_yxan:lmp_mik+:515M:104M:13.5_yxan:lmp_mik+:515M:104M:13.5_ yxan:slurm s+:12M:3M yxan:srun:324M:8M yxan:srun:53M:1M PBS job=38581 user=yxan allocation=hpc lipidhpre queue=checkpt total load=64.12 cpu hours=866.08 wall hours=13.21 unused nodes=0 total nodes=1 pp n=64 avg load=64.12 avg cpu=6033% avg mem=6852mb avg vmem=36176mb top proc=yxan:lmp mik+:mike145:524M:104M:13.5hr:100% toppm=yxan:lmp mikeCpu:mik e145:730M:125M node processes=68

What to look at …	Normal behavior	You should be concerned if
-------------------	-----------------	----------------------------

SNI

115

1. Basic concepts

2. Preparing my job

3. Submitting my job

a) Method 1: qshow <Job ID>

(base) [jasonli3@mike4 ~]\$ gshow 38581 PBS job: 38581, nodes: 1 Hostname Days Load CPU U# (User:Process:VirtualMemory:Memory:Hours) 278 64.12 6033 68 yxan:lmp mik+:524M:104M:13.5 yxan:lmp mik+:524M:104M:13.5 yxan:lmp mik+:533M:107M:13.5 yxan:lmp mik+:748M:128M:13.5 mike145 yxan:lmp mik+:738M:124M:13.5 yxan:lmp mik+:520M:104M:13.5 yxan:lmp mik+:587M:109M:13.5 yxan:lmp mik+:743M:128M:13.5 yxan:lmp mik+:696M:118M:13.5 yxan:lmp mik+:528M:101M:13.5 yxan:lmp mik+:578M:108M:13.5 yxan:lmp mik+:528M:105M:13.5 yxan:lmp mik+:528M:106M:13.5 yxan:lmp mik+:520M:105M:13.5 yxan:lmp mik+:561M:106M:13.5 yxan:lmp mik+:583M:109M:13.5 yxan:lmp mik+:520M:103M:13.5 yxan:lmp mik+:524M:103M:13.5 yxan:lmp mik+:738M:125M:13.5 yxan:lmp mik+:709M:119M:13.5 yxan:lmp mik+:524M:103M:13.5 yxan:lmp mik+:574M:107M:13.5 yxan:lmp mik+:697M:121M:13.5 yxan:lmp mik+:658M:115M:13.5 yxan:lmp mik+:528M:102M:13.5 yxan:lmp mik+:557M:108M:13.5 yxan:lmp mik+:524M:105M:13.5 yxan:lmp mik+:524M:105M:13.5 yxan:lmp mik+:515M:102M:13.5 yxan:lmp mik+:520M:104M:13.5 yxan:lmp mik+:567M:108M:13.5 yxan:lmp mik+:566M:108M:13.5 yxan:lmp mik+:519M:103M:13.5 yxan:lmp mik+:536M:105M:13.5 yxan:lmp_mik+:519M:104M:13.5_yxan:lmp_mik+:528M:103M:13.5_yxan:lmp_mik+:519M:103M:13.5_yxan:lmp_mik+:524M:104M:13.5_yxan:lmp_mik+:524 yxan:lmp_mik+:528M:104M:13.5_yxan:lmp_mik+:516M:101M:13.5_yxan:lmp_mik+:515M:101M:13.5_yxan:lmp_mik+:515M:104M:13.5_yxan:lmp_mik+:520M:101M:13.5_ yxan:lmp_mik+:524M:103M:13.5_yxan:lmp_mik+:520M:101M:13.5_yxan:lmp_mik+:515M:103M:13.5_yxan:lmp_mik+:516M:102M:13.5_yxan:lmp_mik+:587M:110M:13.5_ yxan:lmp_mik+:558M:108M:13.5_yxan:lmp_mik+:524M:102M:13.5_yxan:lmp_mik+:537M:103M:13.5_yxan:lmp_mik+:572M:109M:13.5_yxan:lmp_mik+:549M:104M:13.5 yxan:lmp_mik+:519M:103M:13.5_yxan:lmp_mik+:528M:104M:13.5_yxan:lmp_mik+:520M:104M:13.5_yxan:lmp_mik+:515M:103M:13.5_yxan:lmp_mik+:515 yxan:lmp_mik+:520M:105M:13.5_yxan:lmp_mik+:528M:105M:13.5_yxan:lmp_mik+:515M:103M:13.5_yxan:lmp_mik+:515M:104M:13.5_yxan:lmp_mik+:515 yxan:slurm s+:12M:3M yxan:srun:324M:8M yxan:srun:53M:1M PBS job=20501 user=yxan allocation=hpc lipidhpre queue=checkpt total load=64.12 cpu hours=866.08 wall hours=13.21 unused nodes=0 total nodes=1 pp n=64 avg load=64.12 avg cpu=6033% avg mem=6852mb avg vmem=36176mb top proc=yxan:lmp mik+:mike145:524M:104M:13.5hr:100% toppm=yxan:lmp mikeCpu:mik e145:730M·125M_pode_processes=68

What to look at	Normal behavior	You should be concerned if
avg_load	Close to allocated number of cores on the node	Consistently too low or too high

2. Preparing my job

3. Submitting my job

1. Basic concepts

SNI

116

a) Method 1: qshow <Job ID>

(base) [jasonli3@mike4 ~]\$ gshow 38581 PBS job: 38581, nodes: 1 Hostname Days Load CPU U# (User:Process:VirtualMemory:Memory:Hours) 278 64.12 6033 68 yxan:lmp mik+:524M:104M:13.5 yxan:lmp mik+:524M:104M:13.5 yxan:lmp mik+:533M:107M:13.5 yxan:lmp mik+:748M:128M:13.5 mike145 yxan:lmp mik+:738M:124M:13.5 yxan:lmp mik+:520M:104M:13.5 yxan:lmp mik+:587M:109M:13.5 yxan:lmp mik+:743M:128M:13.5 yxan:lmp mik+:696M:118M:13.5 yxan:lmp mik+:528M:101M:13.5 yxan:lmp mik+:578M:108M:13.5 yxan:lmp mik+:528M:105M:13.5 yxan:lmp mik+:528M:106M:13.5 yxan:lmp mik+:520M:105M:13.5 yxan:lmp mik+:561M:106M:13.5 yxan:lmp mik+:583M:109M:13.5 yxan:lmp mik+:520M:103M:13.5 yxan:lmp mik+:524M:103M:13.5 yxan:lmp mik+:738M:125M:13.5 yxan:lmp mik+:709M:119M:13.5 yxan:lmp mik+:524M:103M:13.5 yxan:lmp mik+:574M:107M:13.5 yxan:lmp mik+:697M:121M:13.5 yxan:lmp mik+:658M:115M:13.5 yxan:lmp mik+:528M:102M:13.5 yxan:lmp mik+:557M:108M:13.5 yxan:lmp mik+:524M:105M:13.5 yxan:lmp mik+:524M:105M:13.5 yxan:lmp mik+:515M:102M:13.5 yxan:lmp mik+:520M:104M:13.5 yxan:lmp mik+:567M:108M:13.5 yxan:lmp mik+:566M:108M:13.5 yxan:lmp mik+:519M:103M:13.5 yxan:lmp mik+:536M:105M:13.5 yxan:lmp mik+:519M:104M:13.5 yxan:lmp mik+:528M:103M:13.5 yxan:lmp mik+:519M:103M:13.5 yxan:lmp mik+:524M:104M:13.5 yxan:lmp mik+:524M:104M:13.5 yxan:lmp mik+:528M:104M:13.5 yxan:lmp mik+:516M:101M:13.5 yxan:lmp mik+:515M:101M:13.5 yxan:lmp mik+:515M:104M:13.5 yxan:lmp mik+:520M:101M:13.5 yxan:lmp_mik+:524M:103M:13.5_yxan:lmp_mik+:520M:101M:13.5_yxan:lmp_mik+:515M:103M:13.5_yxan:lmp_mik+:516M:102M:13.5_yxan:lmp_mik+:587M:110M:13.5_ yxan:lmp_mik+:558M:108M:13.5_yxan:lmp_mik+:524M:102M:13.5_yxan:lmp_mik+:537M:103M:13.5_yxan:lmp_mik+:572M:109M:13.5_yxan:lmp_mik+:549M:104M:13.5 yxan:lmp_mik+:519M:103M:13.5_yxan:lmp_mik+:528M:104M:13.5_yxan:lmp_mik+:520M:104M:13.5_yxan:lmp_mik+:515M:103M:13.5_yxan:lmp_mik+:515 yxan:lmp_mik+:520M:105M:13.5_yxan:lmp_mik+:528M:105M:13.5_yxan:lmp_mik+:515M:103M:13.5_yxan:lmp_mik+:515M:104M:13.5_yxan:lmp_mik+:515M:104M:13.5_ yxan:slurm s+:12M:3M yxan:srun:324M:8M yxan:srun:53M:1M PBS_job=38581 user=yxan allocation=hpc_lipidhpre_queue=checkpt total_load=64.12 cpu_hours=866.08 wall_hours=13.21 unused_nodes=0 total_nodes=1 pp n=64 avg load=64.12 avg cpu=603 % avg mem=6852mb avg vmem=36176mb top proc=yxan:lmp mik+:mike145:524M:104M:13.5hr:100% toppm=yxan:lmp mikeCpu:mik e145:730M:125M node processes=68

What to look at	Normal behavior	You should be concerned if		
avg_load	Close to allocated number of cores on the node	Consistently too low or too high		
ave_mem	Does not exceed total allocated memory	Exceeds total allocated memory		

117

1. Basic concepts

2. Preparing my job

3. Submitting my job

- Displays dynamic real-time view of a **computing node**
- Must run on **computing nodes** !

* ssh to computing nodes while job running (cannot ssh if you do not have jobs on it)

118

1. Basic concepts

2. Preparing my job

3. Submitting my job

<pre>top - 02:23:58 up 278 days, 19:17, 2 users, load average: 63.63, 39.81, 17.49 Tasks: 981 total, 65 running, 916 sleeping, 0 stopped, 0 zombie %Cpu(s): 90.2 us, 9.2 sy, 0.0 ni, 0.0 id, 0.0 wa, 0.5 hi, 0.0 si, 0.0 st MiB Mem : 257004.8 total, 211261.0 free, 41926.9 used, 3816.9 buff/cache MiB Swap: 16641.0 total, 16580.7 free, 60.2 used. 212737.8 avail Mem</pre>								
Http 3wdp: 10041.	0 10	cac,	10500.	/ 1100,	00.2	useu.	212/5	
PID USER	PR	NI	VIRT	RES	SHR S	%CPU	%MEM	TIME+ COMMAND
2701318 jasonli3	20	0	595668	582356	2568 R	100.0	0.2	4:08.94 TDSE_np3_e0
2701342 jasonli3	20	0	595668	581944	2616 R	100.0	0.2	4:08.90 TDSE_np3_e0
2701249 jasonli3	20	0	595668	581792	2464 R	99.7	0.2	4:08.97 TDSE_np3_e0
2701252 jasonli3	20	0	595668	514684	2520 R	99.7	0.2	4:09.00 TDSE np3 e0
2701261 jasonli3	20	0	595668	393828	2616 R	99.7	0.1	4:08.97 TDSE np3 e0
2701264 jasonli3	20	0	595668	581856	2532 R	99.7	0.2	4:08.92 TDSE np3 e0
2701270 jasonli3	20	0	595668	582480	2432 R	99.7	0.2	4:08.95 TDSE_np3_e0
2701273 jasonli3	20	0	595668	581776	2448 R	99.7	0.2	4:08.81 TDSE_np3_e0
2701276 jasonli3	20	0	595668	582160	2568 R	99.7	0.2	4:08.98 TDSE np3 e0
2701270 jacon1j2	20	0	FOFCO	222064	2644 D	00 7	0 1	4.00 00 TDCC nn2 00

	What to look at	Normal behavior	You should be concerned if
--	-----------------	-----------------	----------------------------

SNI

1. Basic concepts

2. Preparing my job

3. Submitting my job

4. Managing my jobs

top - 02:23:58 up	278	day	s, 19:17	, 2 us	ers, loa	d aver	age: 63	3.63, 39.81, 17.49
Tasks: 981 total,								
								, 0.0 si, 0.0 st
MiB Mem : 257004.							•	
MiB Swap: 16641.				*				-
		,		,				
PID USER	PR	NI	VIRT	RES	SHR S	%CPU	%MEM	TIME+ COMMAND
2701318 jasonli3	20	0	595668	582356	2568 R	100.0	0.2	4:08.94 TDSE np3 e0
2701342 jasonli3	20	0	595668	581944	2616 R	100.0	0.2	4:08.90 TDSE np3 e0
2701249 jasonli3	20	0	595668	581792	2464 R	99.7	0.2	4:08.97 TDSE np3 e0
2701252 jasonli3	20	0	595668	514684	2520 R	99.7	0.2	4:09.00 TDSE np3 e0
2701261 jasonli3	20	0	595668	393828	2616 R	99.7	0.1	4:08.97 TDSE np3 e0
2701264 jasonli3	20	0	595668	581856	2532 R	99.7	0.2	4:08.92 TDSE np3 e0
2701270 jasonli3	20	0	595668	582480	2432 R	99.7	0.2	4:08.95 TDSE np3 e0
2701273 jasonli3	20	0	595668	581776	2448 R	99.7	0.2	4:08.81 TDSE np3 e0
2701276 jasonli3	20	0	595668	582160	2568 R	99.7	0.2	4:08.98 TDSE np3 e0
2701270 jacon1j2	20	0	FOFCCO	222064	2644 D	00 7	0 1	4.00 00 TDCT 00 00.1

What to look at …	Normal behavior	You should be concerned if
Load average	Close to allocated number of cores on the node	Consistently too low or too high

SNI

1. Basic concepts

2. Preparing my job

3. Submitting my job

4. Managing my jobs

top - 02:23:58 up 278 days, 19:17, 2 users, load average: 63.63, 39.81, 17.49 Tasks: 981 total, 65 running, 916 sleeping, 0 stopped, 0 zombie %Cpu(s): 90.2 us, 9.2 sy. 0.0 ni, 0.0 id, 0.0 wa, 0.5 hi, 0.0 si, 0.0 st MiB Mem : 257004.8 total, 211261.0 free, 41926.9 used, 3816.9 buff/cache								
MIB Mem : 25/004.	8 TO	tal,	211261.	⊎ free,	41926.9	usea,	3810	6.9 buff/cache
MiB Swap: 16641.	0 to	tal,	16500.	, iree,	60.2	used.	212737	7.8 avaıl Mem
PID USER	PR	NI	VIRT	RES	SHR S	%CPU	%MEM	TIME+ COMMAND
2701318 jasonli3	20	0	595668	582356	2568 R	100.0	0.2	4:08.94 TDSE_np3_e0
2701342 jasonli3	20	0	595668	581944	2616 R	100.0	0.2	4:08.90 TDSE np3 e0
2701249 jasonli3	20	Θ	595668	581792	2464 R	99.7	0.2	4:08.97 TDSE np3 e0
2701252 jasonli3	20	0	595668	514684	2520 R	99.7	0.2	4:09.00 TDSE np3 e0
2701261 jasonli3	20	0	595668	393828	2616 R	99.7	0.1	4:08.97 TDSE np3 e0
2701264 jasonli3	20	0	595668	581856	2532 R	99.7	0.2	4:08.92 TDSE_np3_e0
2701270 jasonli3	20	0	595668	582480	2432 R	99.7	0.2	4:08.95 TDSE_np3_e0
2701273 jasonli3	20	0	595668	581776	2448 R	99.7	0.2	4:08.81 TDSE_np3_e0
2701276 jasonli3	20	Θ	595668	582160	2568 R	99.7	0.2	4:08.98 TDSE_np3_e0
2701270 jacon1j2	20	0	FOFCCO	222064	2644 D	00 7	0 1	4.00 00 TOCT 00 001

What to look at	Normal behavior	You should be concerned if
Load average	Close to allocated number of cores on the node	Consistently too low or too high
Memory usage (not virtual memory)	Does not exceed total allocated memory	Exceeds total allocated memory

121

1. Basic concepts

INFORMATION TECHNOLOGY

2. Preparing my job

c) Method 3: nvidia-smi (for GPU only)

(base) [jasonli3@qbc193 ~]\$ nvidia-smi Wed Feb 1 02:38:32 2023									
NVIDIA-SMI 510.47.03 Driver Version: 510.47.03 CUDA Version: 11.6									
	Name Temp		Persistence Pwr:Usage/(Uncorr. ECC Compute M. MIG M.
 0 N/A 	Tesla 36C		PCIE On 54W / 250			9:3B:00.0 iB / 32768		1	Off Default N/A
1 N/A 	Tesla 36C		PCIE On 52W / 250			0:AF:00.0 iB / 32768			Off Default N/A
+									+
Proce: GPU 	sses: GI ID	CI ID	PID	Туре	e Proce	ess name			GPU Memory Usage
0 1 +	N/A N/A	N/A N/A	259491 259491)/terachem)/terachem	4147MiB 4147MiB

What to look at Normal behavior You should be concerned if	What to look at	Normal behavior …	You should be concerned if
--	-----------------	-------------------	----------------------------

SNI

1. Basic concepts

2. Preparing my job

3. Submitting my job

c) Method 3: nvidia-smi (for GPU only)

(base) [jasonli3@qbc193 ~]\$ nvidia-smi d Feb 1 02:38:32 2023									
NVID	IA-SMI	510.4	7.03 Dr	iver	Version:	510.47.03	(CLDA Version	n: 11.6
GPU Fan						Dis Memory-Us			Incorr. ECC Compute M. MIG M.
0 N/A 	Tesla 36C	V100- P0	PCIE 0 54W / 2	•		0:3B:00.0 iB / 32768		72%	Off Default N/A
1 N/A 	Tesla 36C			•		0:AF:00.0 iB / 32768		78%	Off Default N/A
*									
Proc GPU 	esses: GI ID	CI ID	PID	Тур	e Proc	ess name			GPU Memory Usage
0 1	N/A N/A		259491 259491					n/terachem n/terachem	4147MiB 4147MiB 4147MiB

What to look at …	Normal behavior …	You should be concerned if
GPU usage	Close to 100%	Consistently too low

N

123

4. Managing my jobs

1. Basic concepts

2. Preparing my job

4. Managing my jobs

124

c) Method 3: nvidia-smi (for GPU only)

1. Basic concepts

(base) [jasonli3@qbc193 ~]\$ nvidia-smi Wed Feb 1 02:38:32 2023					
NVIDIA-SMI	510.47.03 Driver	r Version: 510.47.03 CUDA Versi	on: 11.6		
GPU Name Fan Temp		M Bus-Id Disp.A Volatile b Memory-Usage GPU-Util			
0 Tesla N/A 36C	V100-PCIE On P0 54W / 250	00000000:3B:00.0 Off 4155MiB / 32768MiB 72% 	Off Default N/A		
1 Tesla N/A 36C 		00000000:AF:00.0 Off 4155MiB / 32768MiB 78%	0ff Default N/A		
+			+		
Processes: GPU GI ID	CI PID Ty ID	ype Process name	GPU Memory Usage		
0 N/A 1 N/A		C che/TeraChem/bin/terachem C che/TeraChem/bin/terachem			

3. Submitting my job

What to look at …	Normal behavior	You should be concerned if
GPU usage	Close to 100%	Consistently too low
Memory usage (not virtual memory)	Not used up	Used up
LGU INFORMATION TECHNOLOGY SERVICES		

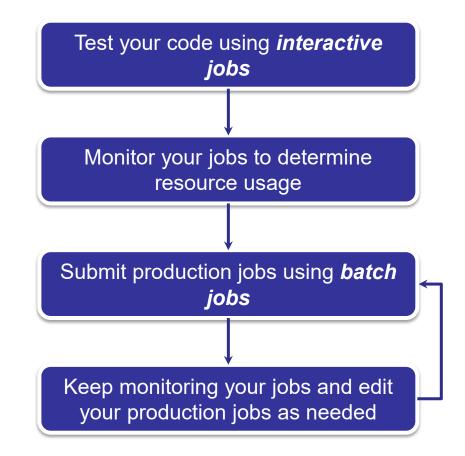
2. Preparing my job

d) Common issues

Issue	What would happen
Exceeded memory allocation (e.g., using more memory than allocated w/ single queue)	Terminated. Receive email notice.
Exceeded ppn/core allocation (e.g., using more cores than allocated w/ single queue)	Terminated. Receive email notice.
Seriously underutilize node CPU cores / unused nodes (e.g., Requested multiple nodes but only runs on one node)	Receive email warning. (* Killed if <i>completely idle</i> for a long time)
Submitting to bigmem but only using little memory	Receive email warning.
Running intensive calculation on head nodes	Terminated. Receive email notice.
Submitting too many (i.e., hundreds of) single-thread jobs	Poor parallelization and bad for server. We may reach out to you to help. (Better yet, reach out to us first)

1. Basic concepts

2. Preparing my job


3. Submitting my job

4. Managing my jobs

Summary

• A typical workflow --

1. Basic concepts

2. Preparing my job

3. Submitting my job

4. Managing my jobs

Outlines

HPC User Environment 2

- 1. Basic concepts
 - 1) Previously on HPC User Environment 1...
 - 2) Job & Job schedulers \rightarrow All calculation must be submitted as jobs
- 2. Preparing my job
 - 1) Basic principles

- \rightarrow Large enough & small enough
- 2) Job duration (wall time)
- 3) Number of nodes & cores
- 4) Job queues
- 3. Submitting my job
 - 1) Interactive job
 - 2) Batch job
- 4. Managing my jobs
 - 1) Useful commands
 - 2) Monitoring job health

- \rightarrow Good for testing and debugging
- \rightarrow Good for production
- \rightarrow How to monitor jobs health, and how to create health jobs

Basic Shell Scripting

Contact us

Contact user services

- Email Help Ticket: <u>sys-help@loni.org</u>
- Telephone Help Desk: +1 (225) 578-0900

