Computational Chemistry An introduction to the computational chemistry package, Gaussian 03 Matt McKenzie LSU-HPC / LONI

Topics

- Basic Theory
 - Gaussian specific
- Gaussian job creation and submission
- Analysis of output

Computational Chemistry Landscape

Small System/ Higher Accuracy Large System / Lower Accuracy **Quantum Mechanics** Thermodynamics Molecular Mechanics MO theory, *ab initio*, DFT MD, MC, Virtual Screening **Basis** sets Force fields **Statistical Mechanics**

Theory Overview

- Pre-req. = knowledge of quantum mechanics
- Goal: Obtain a <u>fundamental</u> knowledge of *ab initio* calculations using Gaussian
 - Cannot cover the entire computational *ab intio* topic
- How wave functions are constructed
- Levels of theory used
- Focus on small molecules, gas phase

Theory

- Solutions to the Schrödinger equation
 (Ĥ-E)Ψ(r₁,r₂,...,r_N)=0
- Ways to solve:
- Numerical: Approx. partial derivatives of Ψ as finite differences of values of Ψ
- Expansion Method: model Ψ ,
- $\Psi(\mathbf{r}_1,\mathbf{r}_2,\ldots,\mathbf{r}_N) \approx \sum_i \mathbf{c}_i \eta_i(\mathbf{r}_1,\mathbf{r}_2,\ldots,\mathbf{r}_N)$
- The set of η_i forms a basis representation of Ψ

Theory – Basis Sets

- Expansion Method
- $(\hat{H}-E)\Psi(r_1,r_2,...,r_N)=0$
- $\Psi(r_1, r_2, ..., r_N) \approx \sum_i c_i \eta_i(r_1, r_2, ..., r_N)$
- The <u>set</u> of η_i forms a <u>basis</u> representation of Ψ

From dictionary.com,

- Basis
- 1. the bottom or base of anything; the part on which something *stands or rests*.
- anything upon which something is based; fundamental principle; groundwork.
- 3. the principal constituent; *fundamental ingredient*.
- 4. a *basic fact, amount*, standard, etc., *used in making computations*, reaching conclusions, or the like: The nurse is paid on an hourly basis. He was chosen on the basis of his college grades.
- 5. Mathematics. *a set of linearly independent elements of a given vector space having the property that every element of the space can be written as a linear combination of the elements of the set.*

 $\circ \quad \Psi(r_1,r_2,\ldots,r_N) \,\approx\! \Sigma_i c_i \eta_i(r_1,r_2,\ldots,r_N)$

Latin Origin: step, place one stands on, pedestal

Theory – Basis sets

- $\Psi(\mathbf{r}_1,\mathbf{r}_2,\ldots,\mathbf{r}_N) \approx \sum_i \mathbf{c}_i \eta_i(\mathbf{r}_1,\mathbf{r}_2,\ldots,\mathbf{r}_N)$
- Instead of the whole system, let's focus on a molecular orbital

- Increase η = higher quality of the wave function
- Increase η = higher computational cost

Basis Functions-STO's & GTO's

Slater-Type Orbitals

$$\eta^{STO}(\mathbf{r}) = x^l y^m z^n e^{-\zeta r}$$

Similar to angular momentum L = I + m + n

Gaussian Type Orbital $\eta^{GTO}(\mathbf{r}) = x^l y^m z^n e^{-\alpha r^2}$

 $\zeta \& \alpha$ are the **orbital exponents**. The radial 'size'

A *large* α means the electron is held *tight* to the nucleus. A *small* α means the electron can *roam far* from the nucleus.

STO vs. GTO

STO

- Correct cusp at r -> 0
- Desired decay $r \rightarrow \infty$
- Correctly mimics H orbitals

- GTO
- Wrong
- Wrong
- Gaussian x gaussian
 =gaussian
- Mathematically & computationally easier

Contracted Gaussian Functions (CFG)

- Product of 2 gaussians is another gaussian
- Integration is easy (versus STO's)
- Loss of accuracy BUT increase the number of gaussians used
- STO-nG, where n = # GTOs used

$$\begin{array}{c} -C \\ s \quad 3 \ 1.00 \\ 0.1722560000D + 03 \quad 0.6176690000D - 01 \\ 0.2591090000D + 02 \quad 0.3587940000D + 00 \\ 0.5533350000D + 01 \quad 0.7007130000D + 00 \\ sp \quad 2 \ 1.00 \\ 0.3664980000D + 01 \quad -0.3958970000D + 00 \quad 0.2364600000D + 00 \\ 0.7705450000D + 00 \quad 0.1215840000D + 01 \quad 0.8606190000D + 00 \\ sp \quad 1 \ 1.00 \\ 0.1958570000D + 00 \quad 0.100000000D + 01 \quad 0.10000000D + 01 \\ \alpha \qquad d_s \qquad d_p \end{array}$$

$$\varphi_i = \sum_{n=1}^N d_{ni}\eta_n \qquad \eta^{GTO}(\mathbf{r}) = x^l y^m z^n e^{-\alpha r^2} = \varphi^{GF}$$

$$\varphi_{2s}(r) = \sum_{i=1}^{3} d_{2s} \varphi_{2s}^{GF}(r, \alpha_{2s}) + d_{2s}^{'} \varphi_{2s}^{GF}(r, \alpha_{2s}^{'}) \qquad \underset{w/c_{i}^{'}s}{\overset{\text{Sum of x G's}}{\overset{w/c_{i}^{'}s}}}$$

$$\varphi_{2s}(r) = -0.395 \varphi_{2s}^{GF}(r, 3.664) + 1.215 \varphi_{2s}^{GF}(r, 0.771) + 1.00 \varphi_{2s}^{GF}(r, 0.195)$$

Extended Basis Set: Split Valence

- Minimal basis set: STO-3G
 - A single CGF for each atomic orbital
- Double-Zeta (DZ) Basis Sets
 - Mulitple basis functions corresponding to each atomic orbital = greater flexibility
 - Inert core orbitals: single CGF
 - Valence orbitals: double set of CGF's

 $\varphi_{2s}(\mathbf{r}) = d\varphi_{2s}^{STO}(r,\zeta_1) + d\varphi_{2s}^{STO}(r,\zeta_2)$

Extended Basis Sets (cont.) 3-21G

- Core = 1s orbital, a sum of 3 gaussians
- Each valence orbital is split into 2 parts
- Valence = 2s & 2p orbitals:
 - Inner part a sum of 2 gaussians
 - Outer part is 1 gaussian

Triple-Zeta (TZ)

- Inner = 1 CGF
- Valence = 3 CGF's
- 6-311G

Additional Basis Functions

Polarization Functions:

- Distortion of molecular orbitals due to the molecular environment
- Functions with a higher angular momentum than any occupied atomic orbital
 - p-functions for H-He **
 - d-functions for Li-Ca *
 - f-functions for transition metals
 - 6-31G(d,p) = 6-31G** = polarization functions added to elements H-Ca

Additional Basis Functions

- Diffuse Functions:
 - Electrons are bound looser in anions, neutral molecules w/ unshared pairs, zwitterions
 - Wave function tail is important
 - Remember,
 - $\phi = Constants \times exp[-\alpha r^2]$
 - For longer tails, this means
 - $0.1 > \alpha > 0.01$
 - Large radial extent
 - 6-31 ' 'G (*'s here for polar.)
 + diffuse functions on first row
 ++ diffuse function on H

Other Basis Sets

These are "<u>about"</u> equivalent

Pople split valence	Pople valence triple zeta	Dunning correlation consistent			
6-31G	6-311G	cc-pv <mark>d</mark> z	aug-cc-pv <mark>d</mark> z		
6-31+G*	6-311+G*	cc-pv <mark>t</mark> z	aug-cc-pv <mark>t</mark> z		
6-31++G**	6-311++G**	cc-pvqz	aug-cc-pvqz		
Diffuse functions Long-distance interactions anions		Polarization Angular char flexibility	Polarization functions Angular charge distribution flexibility		

Levels of theory: Hartree-Fock

The variational principle.

- If Ψ is the true wavefunction, then for any model antisymmetric wavefunction Φ $E(\Phi^{model}) > true E(\Psi)$
- To find the HF w.f.:
 - Minimize the energy w.r.t. changes in the orbitals
 - $\Phi_i \rightarrow \phi_i + \delta \phi_i$
- Adjustable parameters, the c_{ni} 's , the orbital coeff's
- E_{HF} forms an upper bound, E_{exact} E_{HF} = E_{correlation}
 HF neglects electron correlation

Simplistic & typical routine Self-consistent field method

Molecular Geometry Optimization

 Hessian matrix is the square matrix of second-order partial derivatives of a function; that is, it describes the local curvature of a function of many variables.

$$H_{ij} = \frac{\partial^2 E}{\partial x_i \partial x_j}$$
 All H eigenvalues positive = Minimum
All H eigenvalues negative = Maximum
Mix of pos. & peg. eigenvalues = Saddle

Molecular Geometry Optimization Algorithms

- Energy only
 - Simplest
 - Might not correspond to the true minimum
- Gradient following (1st order)
 - Line search, backtracking, gradient descent (steepest descent)
 - Less robust, gradient evaluation at every iteration step

Higher order

- Newton-Raphson, Berny, RFO, GDIIS, ODIIS
- Hessians & higher order derivations at every step
 - Powerful, more time consuming, VERY dependent on initial configuration /guess

Higher orders of theory Configuration Interaction

- HF theory is limited by its neglect of electron-electron correlation.
 - Artificially, electrons interact with a SCF, not individual *e*'s.
 - Most higher ordered levels of theory begin with HF formulation of the w.f.
- "Full CI" includes the Hartree-Fock ground-state determinant and all possible variations.

$$\Psi = a_0 \Psi_0 + \sum_{s=1}^{\infty} a_s \Psi_s$$

- The wavefunction becomes where *s* includes all combinations of substituting electrons into HF *virtual orbitals*.
 - CISD(T) = Config Inter. of singlets, doublets; triplets combinations
 - The a_s 's are optimized; not so practical if s goes to infinity!
- Partial Cl's are useful, and takes less time... ~4 months?

Pople's Diagram

Level of Theory

HCl Potential Energy Scan, comparison of levels of theory Basis Set: aug-cc-pvdz

Gaussian runtime

- Understand how the input file is constructed
- Specifying atomic coordinates
- How to submit your job to a HPC

Defining Atomic Coordinates

- Cartesian Coordinates
 - René Descartes
 - Atom x y z

Z matrix

- Internal Coordinate System
- newatom

newatom atom1 bond-length newatom atom1 bond-length atom2 bondangle newatom atom1 bond-length atom2 bondangle atom3 dihedral-angle

Molden

<u>Select Point:</u>		Render Forces:		
First	\odot	Forces		
Neve		Der, Stale		
Novia		Bort, Scale		
Miscellaneous:		lhecale		
Dens. Mode				
Read File	+	<u>Calculate :</u>		
ZMAT Editor	*	Distance		
PostScript	₽	Angle		
Draw Mode:		Dihedral		
Solid	Ш	Convergence:		
StickColor		SCF LODY.		
Shade	2	(some conve		
Perspect.	Zoom	: 산		
🔟 Label	In			
BackBone	Out	.		
Status line:				
No coordinates found !				

	BondLength	BondAngl	e	DiHedral	Close	
C					<u>\$</u>	
C 1	1,400000					
C 2	1,400000	120,000	000			
C 3	1,400000 2	120,000	000 1	0,000000	0	
C 4	1,400000 3	120,000	000 2	0,000000		
C 5	1,400000	120,000	000 3	0,000000	0	
H 2	1.089000	120,000	000 3	180,00000	0	
C 3	1.450000 2	120,000	000 4	180,000000		
Apply Char	nges to current Z-	Mat	Clear S	Status All Va	ariables	
Cancel Non-Applied Chances New Z-mat from screen coordinates:						
Delete Lin			Da	onden 7-matr		
					1A	
Substitu	ite atom by Fragmer	nt i	elect by cu	rsor	Debelect	
New Z-mat	MapXYZ/Op	timise	Ĥ	pply Selection	on	
Linked Variable						
Write Z-Matrix Submit Job						
File name ?						
Format: Gamess Gaussian Mopac Cartesian						

Gaussian Job Details

%chk=water.chk Checkpt file %NProcLinda=2 # nodes %NProcShared=4 #ppn # mp2/6-31g* opt=tight freq Job description <black line> Title Line Title <black line> Charge Multi. 01 0.0.0.0.0.0 Coordinates H 0.0 1.0 0.0 . . . H 0.0 0.0 1.1 <black line> Blank line !

%chk=water.chk %NProcLinda=2 %NProcShared=4 # mp2/6-31g* opt=tight freq <blank line> Title Line <blank line> 0 1 0 H 1 1.0 H 1 1.0 H 1 1.0 2 104.5 <blank line>

Gaussian Job Details

%chk=water.chk %chk=water.chk %NProcLinda=2 %NProcLinda=2 %NProcShared=4 %NProcShared=4 # mp2/6-31g* opt=tight freq $\# mp2/6-31g^* opt=tight freq$ <black line> <black line> Title Line Title Line <black line> <black line> 01 01 \mathbf{O} \mathbf{O} H_{110} H1 roh1 H 1 1 0 2 104.5 H_1 roh 1_2 abob <black line> <black line> roh1 1.0 Variables section ahoh 104.5 Defining used variables

> If defined by calculation type: bond stretches, isotopes, continue (serial job processing)

Gaussian on LSU HPC / LONI

- Add "+gaussian-03" to your .soft file
 Resoft
- On IBM P5 systems
- Command is
 - runG03 inputfile nprocs queue
 - runG03 input 8 MP5L
 - (LL) 'llclass' for queue types

Gaussian on Dell x86 maxchines

Add the softenv key & resoft Sample submission script, 'qsub subscript'

#!/bin/tcsh **#PBS** – A your_allocation # specify the allocation. Change it to your allocation #PBS -q checkpt # the queue to be used. **#PBS** –2 nodes=1:ppn=4 **#** Number of nodes and processors #PBS -I walltime=1:00:00 # requested Wall-clock time. #PBS – o q03_output # name of the standard out file to be "output-file". #PBS -j oe # standard error output merge to the standard output file. #PBS –N q03test # name of the job (that will appear on executing the qstat command). set NPROCS=`wc -I \$PBS_NODEFILE |gawk'//{print \$1}'` setenv GAUSS_SCRDIR / scratch / \$USER set NODELIST = (-vv -nodelist ""``cat \$PBS_NODEFILE`` "" -mp 4) setenv GAUSS_LFLAGS " \$NODELIST " # cd to the directory with Your input file cd ~USERNAME/q03test # Change this line to reflect your input file and output file q03 < test.inp > q03job.out

Fighting the Queue

- Not all simulations are equal!
- Benchmark your simulation
 - Walltime vs. # processors
 - Walltime vs. # nodes (w/ half procs idle)
 - Find the optimum configuration
 - Decrease walltime to 1hour
- Walltime slightly greater than time needed
- THEN: Tailor your submission script to reflect YOUR needed walltime & # nodes

Fighting the Queue

Check & monitor the load on <u>other</u> HPCs
NOTE: Gaussian license is site specific

Researchers tend to mainly work with a few clusters and submit different job types/sizes

Analysis- some pointers

	Ground State Bond Length				
Theory	Basis Set	(hartrees)	(Angstroms)	% Error	
HF	3-21G*	-457.981	1.2671	-0.58%	
HF	6-31G*	-460.06	1.2662	-0.65%	
HF	6-311G*	-460.087	1.2713	-0.26%	
HF	cc-pvDZ	-460.09	1.2776	0.24%	
HF	cc-pvTZ	-460.107	1.2672	-0.58%	
HF	aug-cc-pvDZ	-460.093	1.2767	0.17%	
HF	aug-cc-pvTZ	-460.108	1.2675	-0.55%	
B3LYP	3-21G*	-458.709	1.2888	1.12%	
B3LYP	6-31G*	-460.796	1.2895	1.18%	
mp2	6-311G**	-460.244	1.2734	0.09%	
CCISD	3-21G*	-458.145	1.2841	0.75%	
CCISD	6-31G*	-460.218	1.2854	0.85%	
CCISD	cc-pVTZ	-460.371	1.2749	0.03%	
Experiment			1.2746		

Level of Theory

B a s i s

S e t

Geometry optimization of HCl

Is CCISD/cc-pVTZ the best?

Is bond length a good judgment of accuracy of the model?

References

- http://www.gaussian.com
- http://www.gaussian.com/g_ur/keywords.htm
 Gaussview

- http://www.cmbi.ru.nl/molden/molden.html
- http://www.cscs.ch/molekel/