

High Performance Computing @ Louisiana State University

Parallel Programming Workshop – LSU
30-31 May 2016

1 of 46

Parallel Programming Workshop

Brought to you by

Le Yan, Wei Feinstein,
Feng Chen, Xiaoxu Guan and Jim Lupo

High Performance Computing @ Louisiana State University

Parallel Programming Workshop – LSU
30-31 May 2016

2 of 46

Registration

● Please make sure you're signed in.

● Won't need a computer this
morning
● unless you need a calculator to add

integers

High Performance Computing @ Louisiana State University

Parallel Programming Workshop – LSU
30-31 May 2016

3 of 46

Important Concepts

● Decomposition

● Scaling

● Speedup

We will jointly “discover” the meaning of these terms through experiment
and group exercises – ease into programming only when necessary.

High Performance Computing @ Louisiana State University

Parallel Programming Workshop – LSU
30-31 May 2016

4 of 46

Distributed Memory Programming

● Two main models for doing parallel programming:

● Distributed Memory – workers must talk with one
another to get data.

● Shared Memory – Workers view the same memory
space.

Each has different issues.

Take on Distributed Memory first.

High Performance Computing @ Louisiana State University

Parallel Programming Workshop – LSU
30-31 May 2016

5 of 46

The Data Set

● Any confusion over the terms “integer” and
“real” numbers?

● The data at hand consists of:
● 50 data cards.

● 5 integer numbers per card.

● An integer card identifier.

Set: 14

164 5 76 144 105

High Performance Computing @ Louisiana State University

Parallel Programming Workshop – LSU
30-31 May 2016

6 of 46

Exercise 1

● Desired analysis: summation over 4 cards

● Divide into groups.

● Each group needs a time keeper.

Pay attention to the process!

High Performance Computing @ Louisiana State University

Parallel Programming Workshop – LSU
30-31 May 2016

7 of 46

Exercise 1 Outcomes

● What was the basic “unit of work” or task?

● What discreet steps were involved?

Yea verily, computers are lowly beasts
 and must be instructed tediously.

High Performance Computing @ Louisiana State University

Parallel Programming Workshop – LSU
30-31 May 2016

8 of 46

Exercise 1 Summary

● Process had 3 distinct steps:
● Hand out cards

● Sum the numbers

● Report results

● More formally:
● Distribute work (tasks).

● Perform work

● Gather results

High Performance Computing @ Louisiana State University

Parallel Programming Workshop – LSU
30-31 May 2016

9 of 46

Exercise 2 – Two Workers

● Repeat Ex 1, only with 2 people adding numbers.

● What changes?

High Performance Computing @ Louisiana State University

Parallel Programming Workshop – LSU
30-31 May 2016

10 of 46

Added Workers

● What happened with more workers?

● The process changes a little:

● Distribute work
● How to do that? Communicate!

● Perform work

● Gather results
● Gather partial results. Communicate!
● Compute final result
● Report result

High Performance Computing @ Louisiana State University

Parallel Programming Workshop – LSU
30-31 May 2016

11 of 46

Exercise 3

● What happens with 3 workers?

● What happens with 4 workers?

● Could we use more than 4 workers?

High Performance Computing @ Louisiana State University

Parallel Programming Workshop – LSU
30-31 May 2016

12 of 46

Exercise 3 Outcomes

● More workers => More communication

● Balanced work assignments?

● Task starvation? (run out of cards)

● How do the input and output compare with
Ex 1?

Everybody's talking at me, I don't hear a word their say'ng ...*

* Fred Neil

High Performance Computing @ Louisiana State University

Parallel Programming Workshop – LSU
30-31 May 2016

13 of 46

Comment on Scaling

● How does parallel work speed up, i.e. “scale”?

● How efficient is it? Again, two types:

S p=
T 1

T n

E p=
T 1

nT n

S serial=
T serial

T n

E serial=
T serial

n T n

Beware of “Lies, damn lies, and statistics . . .”

High Performance Computing @ Louisiana State University

Parallel Programming Workshop – LSU
30-31 May 2016

14 of 46

1 Worker 2 Workers 3 Workers 4 Workers 5 Workers 6 Workers

0

1

2

3

4

5

6

7

1

2

3

4

5

6

1

1.8

2.5

3.2 3.1 3

Hypothetical Speedup Chart

Linear

Actual

Number of Workers

S
o

lu
ti
o

n
 S

p
e

e
d

u
p

S
4
 = 3.2 E

4
 = 0.8

High Performance Computing @ Louisiana State University

Parallel Programming Workshop – LSU
30-31 May 2016

15 of 46

Overhead Expense

● 80% efficiency => 20% overhead.
● If one hour on 5 computers, then 1 computer worth of

power is unused!

● Constant trade-off between time-to-answer and
expense, even if the usage seems "free".

● Time on most HPC systems is charged in core-hours
(or service units), so low efficiency still costs more
as service units are used up faster.

High Performance Computing @ Louisiana State University

Parallel Programming Workshop – LSU
30-31 May 2016

16 of 46

Distributing Work (Data)

● Shared data?
● Each worker has a copy

● Each worker has an ID

● Use ID to compute what to work on.

● Distributed data?
● Head worker has all the data.

● Head worker knows # of workers.

● Head worker computes decomposition.

● Head worker sends pieces to workers.

High Performance Computing @ Louisiana State University

Parallel Programming Workshop – LSU
30-31 May 2016

17 of 46

Sharing Data

● Parallel file system – all workers see same

data files.

● Broadcast – head worker broadcasts all
data to all workers.

High Performance Computing @ Louisiana State University

Parallel Programming Workshop – LSU
30-31 May 2016

18 of 46

Considerations

● How much time is required to communicate?

● Does machines have access to shared file

systems?

High Performance Computing @ Louisiana State University

Parallel Programming Workshop – LSU
30-31 May 2016

19 of 46

Concept Summary

When you approach problem to programming, ask
yourself:

● What algorithm is required?

● How best to decompose the work?

● How is it suppose to scale?

● Minimize comm to get speedup.

● Test to see what has been achieved.

High Performance Computing @ Louisiana State University

Parallel Programming Workshop – LSU
30-31 May 2016

20 of 46

Shared Memory Programming

● Distributed Memory Programming recap:
● Each worker was isolated.

● Sent or computed work decomposition info.

● Sent data or shared via file system.

● What changes with Shared Memory Programming?
● Workers part of same system (i.e. cores).

● Each worker can see all data in memory.

● Communication replaced by coordination of read/write
access.

High Performance Computing @ Louisiana State University

Parallel Programming Workshop – LSU
30-31 May 2016

21 of 46

Exercise 4

A B C D E

1 6 3 13 78 35

2 49 60 138 34 79

3 59 108 108 188 110

4 137 50 4 167 189

5 83 136 215 26 140

6 0 187 77 216 51

Sums

Total

Assume all workers can see all the data - how does

summation task change?

High Performance Computing @ Louisiana State University

Parallel Programming Workshop – LSU
30-31 May 2016

22 of 46

Exercise 4 Outcomes

● Benefits?

● Difficulties?

High Performance Computing @ Louisiana State University

Parallel Programming Workshop – LSU
30-31 May 2016

23 of 46

Concept Summary

● Shared memory lets all processors see all data, it is
just there – no work to distribute it. BUT, need to
coordinate changes!

● Shared Memory Model is growing in popularity as
more cores per node become available, and new
devices such as GPUs become common place –
multi-core PCs use shared memory.

● Hybrid or Heterogeneous models are becoming

important as the needed to combine Shared and
Distributed models increase.

High Performance Computing @ Louisiana State University

Parallel Programming Workshop – LSU
30-31 May 2016

24 of 46

Parallel Thinking

● What kind of questions do you need to consider

when approaching a new program?

● Algorithm – numerical stability? programmability?
● Data size – memory needs?
● Machine architecture – shared/distributed/both?
● Code lifetime – save FTE's or machine hours?
● Choice of language?
● Choice of tools?

High Performance Computing @ Louisiana State University

Parallel Programming Workshop – LSU
30-31 May 2016

25 of 46

Break

High Performance Computing @ Louisiana State University

Parallel Programming Workshop – LSU
30-31 May 2016

26 of 46

The Laplace Heat Equation

● For a “real” problem, consider how to go about
solving the Laplace Heat Equation in 2-D. Idea is to

determine the temperature at any point on a
surface, given the temperature at the boundaries:

100°

0° 0°

0°
100°

0° 0°

0°

High Performance Computing @ Louisiana State University

Parallel Programming Workshop – LSU
30-31 May 2016

27 of 46

Formal Solution

The solution must satisfy:

∇2 φ=0

with the application of Dirichlet boundary conditions
(constant values around edge of region.

High Performance Computing @ Louisiana State University

Parallel Programming Workshop – LSU
30-31 May 2016

28 of 46

The Serial Solution

Subdivide the surface into a mesh of points, add boundary points.

Apply the following 5-point stencil iteratively until the temperature stops
changing (new temp approximates old temp) to interior only:

T i , j
n+1=0.25∗(T i−1, j

n +T i+1, j
n +T i , j−1

n +T i , j+1
n)

0° 0°

100°100°

100°

0° 0°

0°

0°

High Performance Computing @ Louisiana State University

Parallel Programming Workshop – LSU
30-31 May 2016

29 of 46

Exercise 5: 1-D Problem

Discuss programming this problem in your group.

0 ? ? ? ? ? 100

T i
n+1=0.5∗(T i−1

n +T i+1
n)

High Performance Computing @ Louisiana State University

Parallel Programming Workshop – LSU
30-31 May 2016

30 of 46

0 0 0 0 0 0 100

Step 1:

Array 1

Array 2 0 0 0 0 0 50 100

0 0 0 0 25 50 100

Step 2:

Array 1

Array 2 0 0 0 0 0 50 100

0 0 0 0 25 50 100

Step 3:

Array 1

Array 2 0 0 0 12.5 25 62.5 100

High Performance Computing @ Louisiana State University

Parallel Programming Workshop – LSU
30-31 May 2016

31 of 46

Exercise 5: Solution

70 iterations to reach 0.001% convergence bound.

0 16.6661 33.3324 49.9988 66.6658 83.3327 100

High Performance Computing @ Louisiana State University

Parallel Programming Workshop – LSU
30-31 May 2016

32 of 46

Exercise 6

Now the question is, how would we do this in parallel?

Need one small modification, so try using 2 workers first.

0 ? ? ? ? ? ? 100

High Performance Computing @ Louisiana State University

Parallel Programming Workshop – LSU
30-31 May 2016

33 of 46

Process Start

0 0 0 0 0 0 0 100Initialize:

Decompose:

0 0 0 0 0

0 0 0 0 100

Worker 1

Worker 2

“Ghost” or overlapped cells.

High Performance Computing @ Louisiana State University

Parallel Programming Workshop – LSU
30-31 May 2016

34 of 46

Process Iteration

Compute:
0 0 0 0 0

0 0 0 50 100

Worker 1

Worker 2

Communicate:
0 0 0 0 0

0 0 0 50 100

Worker 1

Worker 2

Lather, Rinse, Repeat.

High Performance Computing @ Louisiana State University

Parallel Programming Workshop – LSU
30-31 May 2016

35 of 46

What Would 3 Workers Involve?

Communicate:

0 0 0 0

0 0 50 100

Worker 1

Worker 2

0 0 0 0

Worker3

Workers in the middle have to communicate
intermediate results to neighbors on both sides!

Number of workers limited by problem size!

High Performance Computing @ Louisiana State University

Parallel Programming Workshop – LSU
30-31 May 2016

36 of 46

Serial Program

● Grab a copy of the program named:

/work/jalupo/laplace_solver_serial.f90

● Open with “less” or “vi” so you can follow
along.

● Anyone have trouble reading Fortran?

● Anyone not know how to compile and run a
Fortran program?

High Performance Computing @ Louisiana State University

Parallel Programming Workshop – LSU
30-31 May 2016

37 of 46

Main Components

● program laplace_main – program main line.

● subroutine laplace – the actual solver. It also

allocates memory to hold the 2-D mesh based on
the requested rows and columns.

● subroutine initialize – sets the internal

temperatures to 0.

● subroutine set_bcs – sets up the boundary

conditions.

High Performance Computing @ Louisiana State University

Parallel Programming Workshop – LSU
30-31 May 2016

38 of 46

Compiling Fortran

● Here is a quick summary of how to compile and run
this particular program (assumes default
environment):

$ ifort -o laplace laplace_solver_serial.f90

$./laplace

● You should see the following line of text on your screen:

Usage: laplace nrows ncols niter iprint relerr

Now try executing the program with some real numbers:

$./laplace 100 200 3000 300 0.001

High Performance Computing @ Louisiana State University

Parallel Programming Workshop – LSU
30-31 May 2016

39 of 46

Results of Run

$./laplace 100 200 10000 3000 0.01

 Solution has converged.

Iterations: 2241

Max error: 0.01

Total time: 0.079s

What if the problem gets bigger, and
error condition was changed to 0.001?

High Performance Computing @ Louisiana State University

Parallel Programming Workshop – LSU
30-31 May 2016

40 of 46

Higher Accuracy Run

$./laplace 1000 1000 30000 1000 0.001

 Solution has converged.

Iterations: 29812

Max error: 0.001

Total time: 60.546s

High Performance Computing @ Louisiana State University

Parallel Programming Workshop – LSU
30-31 May 2016

41 of 46

Why go to parallel?

What if this was only part of a simulation and the

temperatures changed 25,000 times?

Even though 1 solution taking 1 second seems

fast, 25,000 solutions would take 7 hours!

Can it be done in parallel to speed up the over all

simulation time?

How do we approach the solution in parallel?

High Performance Computing @ Louisiana State University

Parallel Programming Workshop – LSU
30-31 May 2016

42 of 46

Decomposition

Assuming 2 processors, let's divide the surface in
half.

0°

0°

0°

100°

0°

100°

What overhead do we have to consider

adding to make this give the same answer?

0°

0°

High Performance Computing @ Louisiana State University

Parallel Programming Workshop – LSU
30-31 May 2016

43 of 46

Ghost Cells

Process 1 Process 2

0°

100°

0°

0°

0°

0°

0°

100°

High Performance Computing @ Louisiana State University

Parallel Programming Workshop – LSU
30-31 May 2016

44 of 46

Overhead

● Breaking up the problem so multiple processes can
work on it introduces overhead:
● Logic must be added so each process knows which

part of the mesh it is expected to work on. This
directly impacts how the code will start up.

● Communication must be added so data from adjoining
regions can be properly updated.

● Code must be added so the final results can be
communicated. This directly impacts how the code will
report results and terminate.

● A serial program is not the same as a parallel
program running on 1 processor!

High Performance Computing @ Louisiana State University

Parallel Programming Workshop – LSU
30-31 May 2016

45 of 46

Compute/Communication Bound

● Clearly, if you increase the number of processes
working on this problem, the amount of
communication required increases.

● With a few processes, this problem exhibits the

property of being compute bound.

● When the number of processes approach the
number of mesh points, it becomes communication

bound.

● All parallel programs exhibit one form or the other
depending on the problem specifics.

High Performance Computing @ Louisiana State University

Parallel Programming Workshop – LSU
30-31 May 2016

46 of 46

LUNCH

